2720 Residence

2720 71st Avenue SE Mercer Island, Washington 98040

Structural Engineering Calculations

By

Dihong Shao, SE

July 29, 2021

GENERAL STRUCTURAL NOTES:

(THE FOLLOWING NOTES APPLIES TO THE PROPOSED PROJECT UNLESS OTHERWISE NOTED ON THE PLANS AND DETAILS)

ALL DESIGN AND CONSTRUCTION SHALL COMPLY WITH THE 2018 INTERNATIONAL BUILDING CODE AND SEATTLE BUILDING CODE

UNLESS INDICATED AS EXISTING OR (E), ALL OTHERS ARE NEW CONSTRUCTIONS OR AS INDICATED AS (N).

DESIGN LOADING CRITERIA:

1. DESIGN LOADS:

ROOF SNOW LOAD: FLOOR LIVE LOAD: DECK LIVE LOAD: WIND: SEISMIC: 25 PSF 40 PSF 60 PSF 110-MPH (3-SECOND GUST), EXPOSURE B, Kzt= 1.90 SEISMIC USER GROUP I, I=1.0, SITE CLASS Sd Ss=1.48; S1=0.50, Fa=1.00; Fv=1.50 S_{DS}=0.98; S_{DI}=0.50 R=6.5 (WOOD SHEAR WALL) Ω o=3.0 Cd=4.0

DESIGN SOIL PRESSURE:

1500 PSF MAXIMUM DEAD+LIVE LOAD WITH ALLOWED INCREASE FOR DEPTH OF 110 PSF PER FOOT. CAST FOOTING ON NATIVE SITE SOILS OR STRUCTURAL FILL THAT EXTENDS DOWN TO THESE SOILS.

EQUIVALENT LATERAL FLUID PRESSURE FOR CANTILEVER WALLS: 35 PSF BASEMENT WALLS: 55 PSF PASSIVE SOIL PRESSURE: 350 PCF SOIL FRICTION: 0.35

CONSTRUCTION REQUIREMENTS:

1. CONTRACTOR SHALL VERIFY DIMENSIONS AND CONDITIONS FOR COMPATIBILITY AND SHALL NOTIFY OWNER OF ANY DISCREPANCIES PRIOR TO CONSTRUCTION. ALL DIMENSIONS OF EXISTING CONSTRUCTION SHOWN IN THE DRAWINGS ARE INTENDED AS GUIDELINES ONLY AND MUST BE VERIFIED. THE CONTRACTOR SHALL BRING ALL DISCREPANCIES TO THE OWNER.

2. CONTRACTOR SHALL PROVIDE TEMPORARY SHORING AND BRACING FOR THE STRUCTURE AND STRUCTURAL COMPONENTS UNTIL ALL FINAL CONNECTIONS HAVE BEEN COMPLETED IN ACCORDING WITH THE PLANS AND DETAILS. THIS INCLUDES EXISTING STRUCTURE.

3. CONTRACTOR SHALL BE RESPONSIBLE FOR ALL SAFETY AND HEALTH PRECAUTIONS INCLUDING HAZARDOUS CONDITIONS AND MATERIALS EXISTED OR CREATED BY OTHER PARTIES THAT WORKING ON THE PROJECT. CONTRACTOR SHALL ALSO BE RESPONSIBLE FOR CONSTRUCTION METHODS, TECHNIQUES, AND SEQUENCES OR PROCEDURES REQUIRED TO PERFORM THE WORK.

4. CONTRACTOR SHALL BE RESPONSIBLE FOR KEEPING ALL EXISTING COMPONENTS, WHICH ARE REQUIRED TO REMAIN, IN THEIR ORIGINAL CONDITION. THIS INCLUDES WEATHER PROTECTIONS FOR THESE COMPONENTS UNTIL SUCH TIME THAT THE ENTIRE DWELLING INCLUDING THE NEW ADDITION ITSELF IS WEATHER PROTECTED.

5. CONTRACTOR INITIATED CHANGES SHALL BE SUBMITTED IN WRITING TO THE OWNER FOR APPROVAL PRIOR FABRICATION OR CONSTRUCTION. CHANGES SHOWN IN SHOP DRAWINGS ONLY WILL NOT SATISFY THIS REQUIREMENT.

6. CONTRACTOR SHALL VERIFY ALL EXISTING CONDITIONS BEFORE COMMENCING ANY DEMOLITION. SHORING SHALL BE INSTALLED TO SUPPORT EXISTING CONSTRUCTION AS REQUIRED AND IN A MANNER SUITABLE TO THE WORK SEQUENCES. DEMOLITION DEBRIS SHALL NOT BE ALLOWED TO DAMAGE OR OVERLOAD THE EXISTING STRUCTURAL. LIMIT CONSTRUCTION LOADING (INCLUDING DEMOLITION DEBRIS) ON EXISTING CEILING FAMING TO 10 PSF AND ON EXISTING FLOOR FRAMING TO 40 PSF. PROVIDE TEMPORARY PLANKS OR STRUCTURAL SHEATHING OVER THE EXISTING CEILING JOISTS AS REQUIRED TO PROTECT THE EXISTING SOFFIT.

7. CONTRACTOR SHALL CHECK FOR DRY-ROT FOR ALL EXISTING STRUCTURAL COMPONENTS AT EXTERIOR WALLS, EXISTING TOILET ROOM FLOORS AND WALLS, AREAS SHOWN WATER STAINS, WOOD IN CONTACT WITH EARTH AND CONCRETE, AND ALL WOOD MEMBERS IN CRAW SPACES. ALL ROTTEN WOOD SHALL BE REMOVED AND DAMAGED MEMBERS SHALL BE REPLACED OR REPAIRED AS DIRECTED BY THE OWNER.

8. DRAWINGS INDICATE GENERAL AND TYPICAL DETAILS OF CONSTRUCTION. WHERE CONDITIONS ARE NOT SPECIFICALLY INDICATED BUT ARE OF SIMILAR CHARACTER TO DETAILS SHOWN, SIMILAR DETAILS OF CONSTRUCTION SHALL BE USED, SUBJECT TO REVIEW AND APPROVAL BY THE OWNER.

9. ALL STRUCTURAL SYSTEMS, WHICH ARE TO BE COMPOSED OF COMPONENTS TO BE FIELD ERECTED, SHALL BE SUPERVISED BY THE SUPPLIER DURING MANUFACTURING, DELIVERY, HANDLING, STORAGE, AND ERECTION IN ACCORDANCE WITH INSTRUCTIONS PREPARED BY THE SUPPLIER.

STRUCTURAL FRAMING REQUIREMENTS:

1. ALL LUMBER SHALL BE KILN DRIED OR MC-19 WITH WWPA GRADED OR APPROVED EQUAL. ALL STRUCTURAL FLOOR, ROOF, AND SHEAR WALL SHEARING SHALL BE APA RATED. ALL SPECIFIED INDUSTRIAL LUMBERS, NAMELY PARALLAM PSL, MICROLLAM LVL, TIMBERSTRAND LSL, AND TJI SHALL BE MADE BY TRUS-JOIST CORPORATION OR OWNER APPROVED EQUAL.

2. MINIMUM NAILING SHALL COMPLY WITH TABLE 2304.10.1 OF THE 2015 IBC.

3. ALL NAILS SIZES SPECIFIED ON DRAWINGS ARE BASED ON THE FOLLOWING SPECIFICATIONS: NAIL SIZE, LENGTH, AND DIAMETER
6D 2" 0.113" 8D 2-1/2" 0.131 10D 2-1/2" 0.148 16D BOX 3" 0.131 THE FOLLOWING STAPLES MAY BE SUBSTITUTED FOR NAILING OF PLYWOOD NAIL SIZE, EQUIVALENT STAPLE, AND MINIMUM LENGTH
6D 16GA 1-3/4" 8D 15GA 1-3/4" 10D 13GA 1-3/4"

4. GALVANIZED METAL TIMBER CONNECTORS CALLED OUT BY LETTERS AND NUMBERS SHALL BE "STRONG-TIE" BY SIMPSON COMPANY INCLUDING SIMPSON STRONG WALLS AND SIMPSON GARAGE PORTAL WALLS (WHERE OCCUR) OR OWNER APPROVED EQUAL. IF NO SPESIFIC HANGER IS CALLED OUT, ANY HANGER MADE FOR THE SPECIFIED BEAM OR JOIST CAN BE USED.

5. ALL EXTERIOR WALL STUDS ARE 2X6 HEM-FIR NO.2 STUDS AT 16" ON CENTER. ALL INTERIOR WALL STUDS ARE 2X4 HEM-FIR NO.2 STUDS AT 16" ON CENTER. PROVIDE ONE BEARING STUD AND ONE FULL HEIGHT STUD AT EACH SIDE OF DOOR AND WINDOW OPENINGS WHEN THEIR ROUGH OPENING WIDTH IS EQUAL OR LESS THAN 3'-0". PROVIDE TWO BEARING STUDS AND TWO FULL HEIGHT STUDS AT EACH SIDE OF DOOR AND WINDOW OPENINGS WHEN THEIR ROUGH OPENING WIDTH IS GREATER THAN 3'-0" OR WALL IS FRAMED WITH (2)2X6 AT 16" ON CENTER. PROVIDE TRIPLE STUDS UNDER ALL BEAM AND KING-TRUSS BEARING LOCATIONS. THESE MULTIPLE STUDS NEED TO EXTEND DOWN TO THE TOP OF CONCRETE. PROVIDE TRIPLE VERTICAL BLOCKING AT JOIST SPACING AS NEEDED. FACE NAIL WALL TOP DOUBLE PLATE WITH 16D @ 12" AND LAP MINIMUM 4'-0" AT JOINTS AND PROVIDE (6) 16D @ 4" ON CENTER EACH SIDE OF JOINT. FACE NAIL WALL SILL PLATE THROUGH FLOOR SHEATHING TO DOUBLE PLATES, BEAM, OR SUPPORTING MEMBER BELOW WITH 16D @ 6" ON CENTER. MULTIPLE STUD SHALL BE NAILED TOGETHER WITH 16D @ 12" ON CENTER STAGGERED EACH FACE. PROVIDE SOLID BLOCKING BETWEEN STUDS AT MID-HEIGHT FOR ALL STUD WALLS OVER 10' IN HEIGHT.

6. PROVIDE DOUBLE JOISTS UNDER ALL PARALLEL PARTITIONS THAT EXTEND OVER MORE THAN HALF THE JOIST LENGTH AND AROUND ALL OPENING IN FLOOR.

 ALL FLOOR FRAMING LUMBERS: DOUGLAS FIR NO.2 OR HAM FIR NO.1 ALL HEADERS: DOUGLAS FIR NO.2 OR HAM FIR NO.1. TYPICAL HEADER 4X8 MINIMUM UNLESS OTHERWISE SHOWN ON THE PLANS. ALL POSTS: DOUGLAS FIR NO.2 OR HAM FIR NO.1 UNLESS OTHERWISE SHOWN ON THE PLANS STUDS, PLATES, AND MISCELLANEOUS LIGHT FRAMING: HEM-FIR NO.2

8. METAL PLATE CONNECTED WOOD TRUSSES: WOOD TRUSSES SHALL BE DESIGNED, MANUFACTURED AND INSTALLED PER TRUSS PLATE INSTITUTE (TPI) SPECIFICATIONS. TPI SPECIFICATIONS SHALL NOT REVISE TRUSS ENGINEER'S AND TRUSS MANUFACTURER'S RESPONSIBILITY NOTED BELOW. WEB AND CHORD SIZES INDICATED ON PLANS AND NOTES ARE MINIMUM ONLY. ROOF DESIGN DEAD LOAD 10 PSF MINIMUM TOP CHORD AND 7 PSF MINIMUM BOTTOM CHORD WITH 40 PSF MINIMUM AT ATTIC FLOOR WHERE APPLICABLE. USE 2X6 MINIMUM BOTTOM CHORD FOR ATTIC FLOOR. ROOF DESIGN WIND UPLIFT 15 PSF MINIMUM TYPICAL, EXCEPT USE 30 PSF MINIMUM WITHIN 10 FEET OF ROOF EAVES OR RAKES. DESIGN TRUSSES FOR SUPPORT OF DEAD, LIVE, SNOWDRIFT, AND WIND LOADS AND MECHANICAL/ELECTRICAL EQUIPMENT, PIPING, ETC AS REQUIRED. SNOW DRIFT LOADING LOCATIONS AND VALUES TO BE DETERMINED BY TRUSS ENGINEER. SUBMIT SHOP DRAWINGS AND DESIGN CALCULATIONS SHOWING TRUSSES, TRUSS TO TRUSS AND TRUSS TO SUPPORTING STRUCTURE CONNECTIONS, ERECTION AND PERMANENT BRACING SIZES AND CONNECTIONS. PROVIDE STANDARD TRUSS CAMBER. PROVIDE ERECTION BRACING PER MANUFACTURE'S INSTRUCTIONS. PROVIDE AND INSTALL PERMANENT BRACING FOR LATERAL SUPPORT OF INDIVIDUAL WEB AND CHORD MEMBERS AS DESIGNED BY THE TRUSS ENGINEER. PROVIDE AND INSTALL ALL TRUSS TO TRUSS AND TRUSS TO SUPPORTING STRUCTURE CONNECTIONS.

9. VENT BLOCKINGS CALLED OUT IN THE DRAWINGS ARE 2X WOOD BLOCKING WITH (3) EQUAL SPACED 1-1/2" DIAMETER HOLES ON EACH BLOCKING WITH MASH INSTALLED.

10. ROOF SHEATHING: 15/32"(1/2") MINIMUM CDX PLYWOOD OR STRUCTURAL PANEL WITH SPAN RATING OF 32/16, UNBLOCKED, LAID UP WITH FACE GRAIN PERPENDICULAR TO FRAMING BELOW, STAGGER END JOINTS. INSTALL PLYCLIPS AS REQUIRED. NAILING IS AS FOLLOWS: 10D @ 6" DIAPHRAGM BOUNDARIES, OVER EXTERIOR WALLS, AND INTERIOR SHEAR WALLS, 10D @ 6 ALL SUPPORTED EDGES, AND 10D @ 12" FIELD.

11. FLOOR SHEATHING: 23/32"(3/4") MINIMUM CDX TONGUE AND GROOVE PLYWOOD WITH SPAN RATING OF 40/20, UNBLOCKED FOR FLOOR JOIST SPACED AT 16" ON CENTER; 7/8" MINIMUM CDX TONGUE AND GROOVE PLYWOOD WITH SPAN RATING OF 40/20 UNBLOCKED FOR FLOOR JOIST SPACED AT 24" ON CENTER; LAID UP WITH FACE GRAIN PERPENDICULAR TO FRAMING BELOW, STAGGER END JOINTS. GLUE FLOOR SHEATHING TO ALL SUPPORTS WITH A CONTINUOUS 3/16" DIAMETER BEAD MINIMUM. PROVIDE TWO BEADS AT PANEL JOINTS. NAILING IS AS FOLLOWS: 10D @ 6" DIAPHRAGM BOUNDARIES, OVER EXTERIOR WALLS, AND INTERIOR SHEAR WALLS, 10D @ 6" ALL SUPPORTED EDGES, AND 10D @ 10" FIELD.

12. EXTERIOR/INTERIOR/SHEAR WALL SHEATHING 15/32" (1/2") MINIMUM CDX PLYWOOD WITH SPAN RATING OF 24/0, EXTERIOR SIDE BLOCKED (BLOCK ALL UNSUPPORTED EDGES), NAIL WITH 10D @ 6" ALL EDGES AND 10D @ 12" FIELD. NAIL BOTTOM PLATE TO FRAMING BELOW WITH 16D @ 6".

13. WALL SILL PLATES OVER THE CONCRETE ARE TO BE 3X TREATED LUMBER WITH 1/2" DIAMETER ANCHOR BOLTS AT 4'-0" ON CENTER WITH EMBED IN CONCRETE OF 7" MINIMUM. ALL BOLTS SHALL HAVE 3X3X3/16 STEEL WASHER PLATE UNDER BOLT NUTS. MINIMUM OF TWO BOLTS PER PLATE WITH BOLT END DISTANCE OF 6" MINIMUM. SHEAR WALL BOTTOM PLATE NAILING AND ALL NAILING AT PRESSURE TREATED PLATE/MEMBERS SHALL BE HOT-DIPPED ZINC-COATED GALVANIZED STEEL OR STAINLESS STEEL NAILS

CONCRETE AND FOUNDATION CONSTRUCTIONS:

1. ALL CONCRETE f'c=2500 PSI, MAXIMUM WATER/CEMENT RATIO =0.45, MINIMUM 5-1/2 SACKS OF CEMENT PER CUBIC YARD. NO SPECIAL INSPECTION REQUIRED. CONCRETE BATCH TICKET OR DELIVERY RECEIPT FOR 2500 PSI CONCRETE ON SITE FOR BUILDING INSPECTOR VERIFICATION. CONCRETE SHALL BE AIR ENTRAINED. TOTAL AIR CONTENT (PERCENT BY VOLUME OF CONCRETE) SHALL NOT BE LESS THAN 5 PERCENT OR MORE THAN 7 PERCENT.

2. REINFORCING STEEL SHALL CONFORM TO ASTM A615, GRADE 60. SPECIAL INSPECTION REQUIRED. ASTM A706, GRADE 60, REINFORCING STEEL SHALL BE USED FOR WELDED OR FIELD-BENT BARS, SHEAR WALL BOUNDARY MEMBER REINFORCING, MAIN REINFORCING, SPIRALS, TIES AND STIRRUPS IN THE FRAME MEMBERS (BEAMS AND COLUMNS) COMPRISING THE LATERAL FORCE RESISTING SYSTEM.

3. WELDED WIRE FABRIC PER ASTM A185. FURNISH IN FLAT SHEETS, NOT ROLLS. LAP EDGES 1-1/2 MESH MINIMUM.

4. PROVIDE CONCRETE COVER AS FOLLOWS: FOOTINGS 3", WALLS 1-1/2", AND SLAB ON GRADE 1-1/2".

5. PROVIDE 2#4 LONGITUDINAL BOTTOM BARS IN WALL FOOTINGS. PROVIDE CORNER BARS OF SAME SIZE AND NUMBER AT CORNERS AND INTERSECTIONS, 42 BAR DIAMETERS EACH LEG. PROVIDE VERTICAL DOWELS OF SAME SIZE, NUMBER AND SPACING AS CONCRETE STEM WALL VERTICAL BARS WITH A 90 DEGREE STANDARD HOOK AT THE BOTTOM OF THE FOOTING.

6. REINFORCING CONCRETE WALLS AS FOLLOWS"

6" WALLS, #4 @ 12 HORIZONTAL AND VERTICAL AT CENTER OF WALL,

8" WALLS, #5 @ 15 HORIZONTAL AND VERTICAL AT CENTER OF WALL,

10" WALLS, #4 @ 16 HORIZONTAL AND VERTICAL AT EACH FACE,

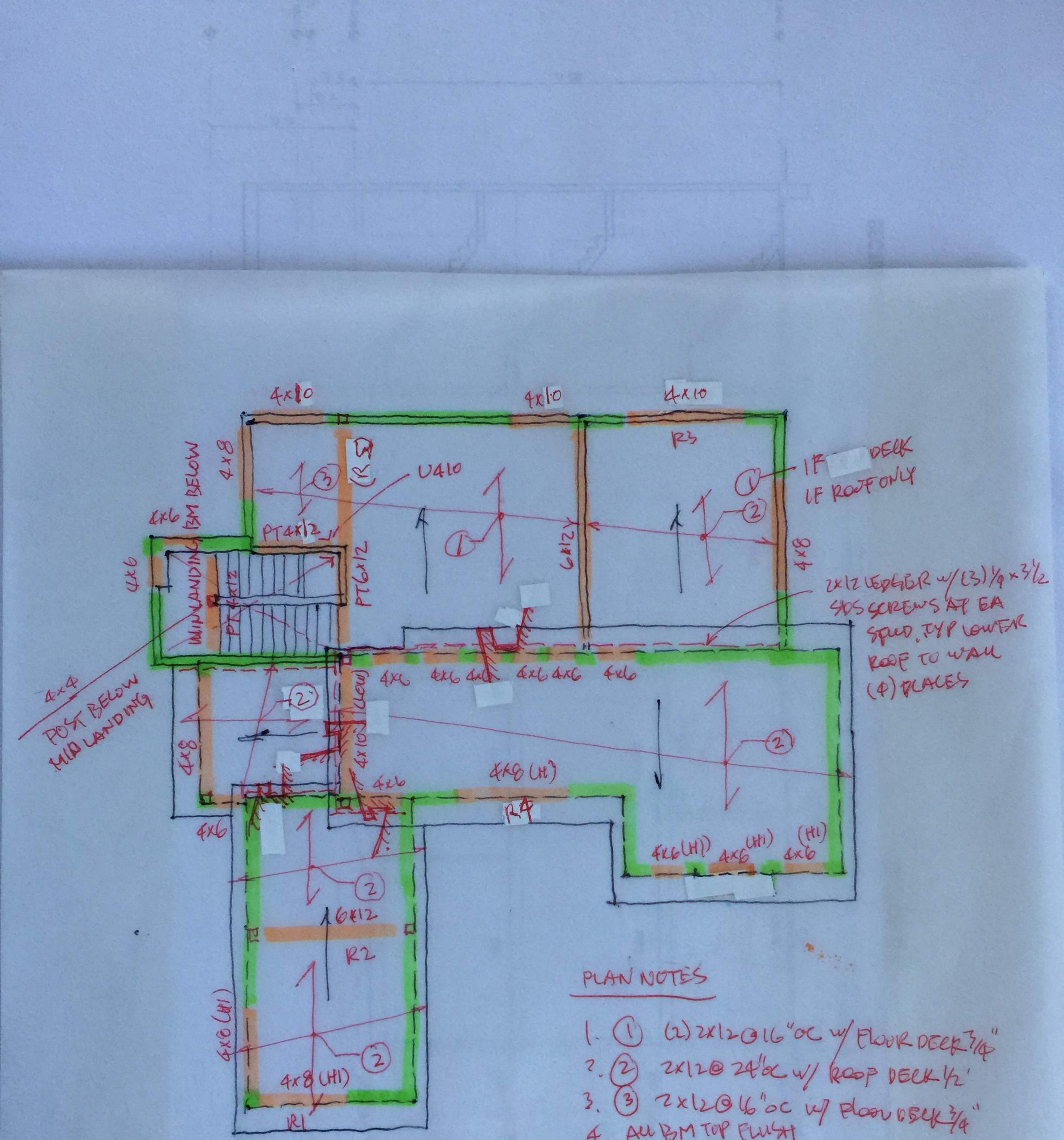
12" WALLS, #4 @ 12 HORIZONTAL AND VERTICAL AT EACH FACE.

AT OPENINGS OVER 12" SQUARE, PROVIDE 2#5 BARS AT CENTER OF WALL ALL FOUR SIDES, EXCEPT 10" WALLS OR OVER PROVIDE 1#6 BAR EACH FACE ALL FOUR SIDES, EXTENDING 42 BAR DIAMETERS PAST OPENING. PROVIDE 1#5X4'-0" DIAGONAL BAR AT CENTER OF WALL ALL FOUR CORNERS.

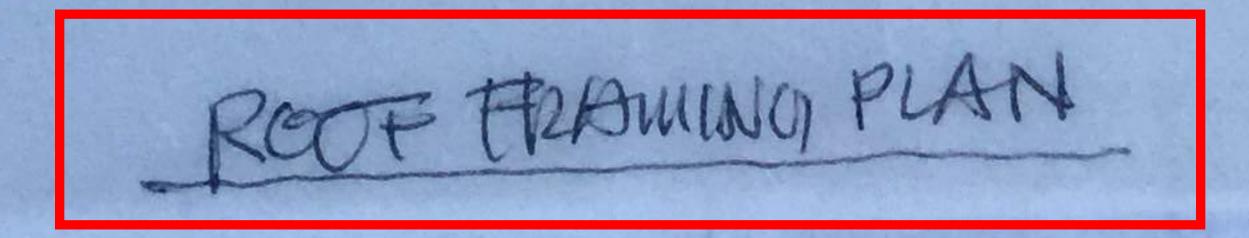
AT CORNERS, PROVIDE CORNER BARS IN OUTSIDE FACE OF SAME SIZE AND SPACING AS HORIZONTAL BARS, 42 BAR DIAMETER EACH LEG.

AT INTERSECTIONS, PROVIDE CORNER BARS OF SAME SIZE, NUMBER AND SPACING AS HORIZONTAL BARSOF INTERSECTING WALL, 42 BAR DIAMETER EACH LEG.

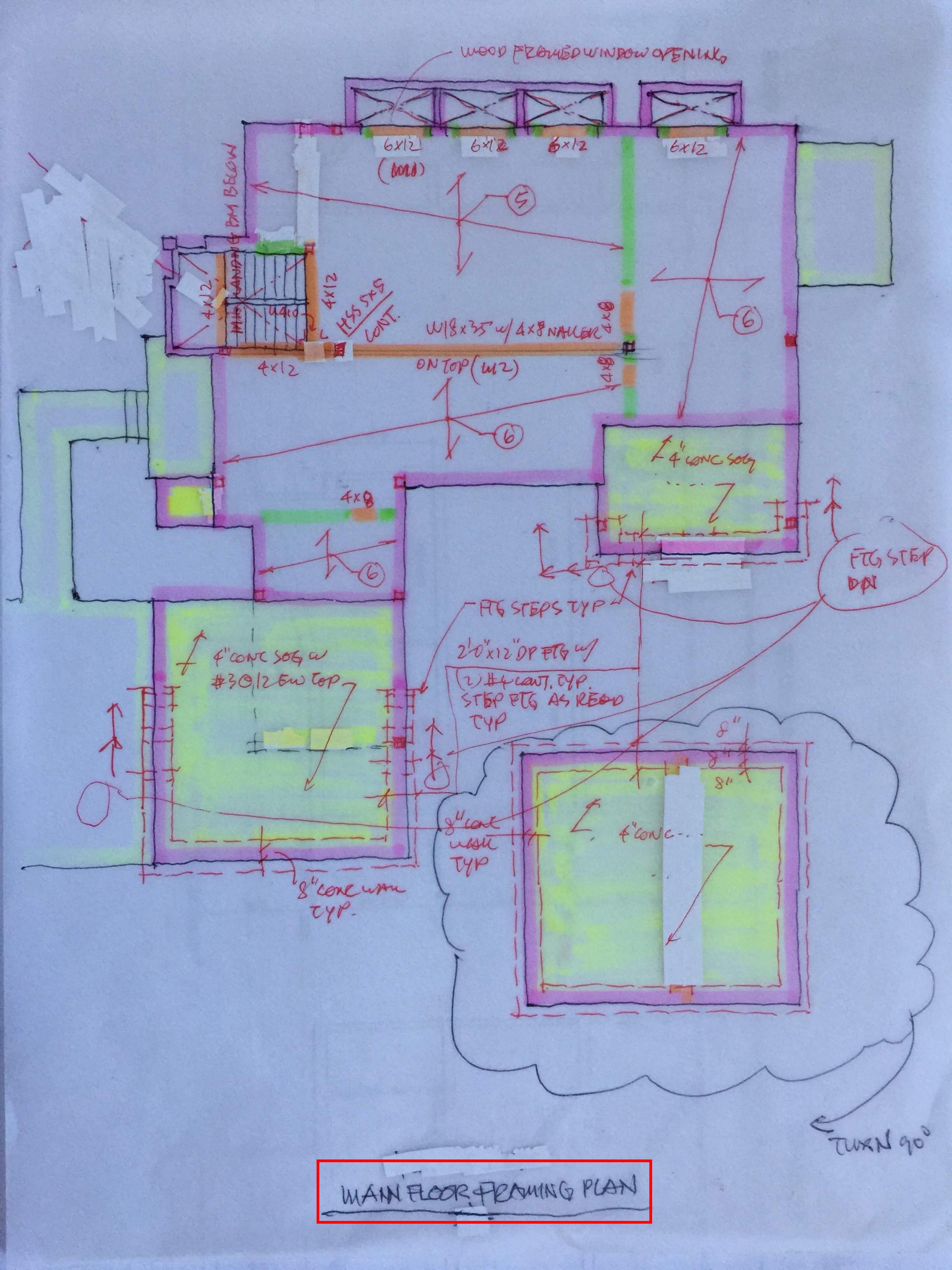
PROVIDE 2#4 LONGITUDINAL BARS AT TOP OF WALLS. PROVIDE KEY WAY OR ROUGHENED SURFACE AT CONSTRUCTION JOINTS.

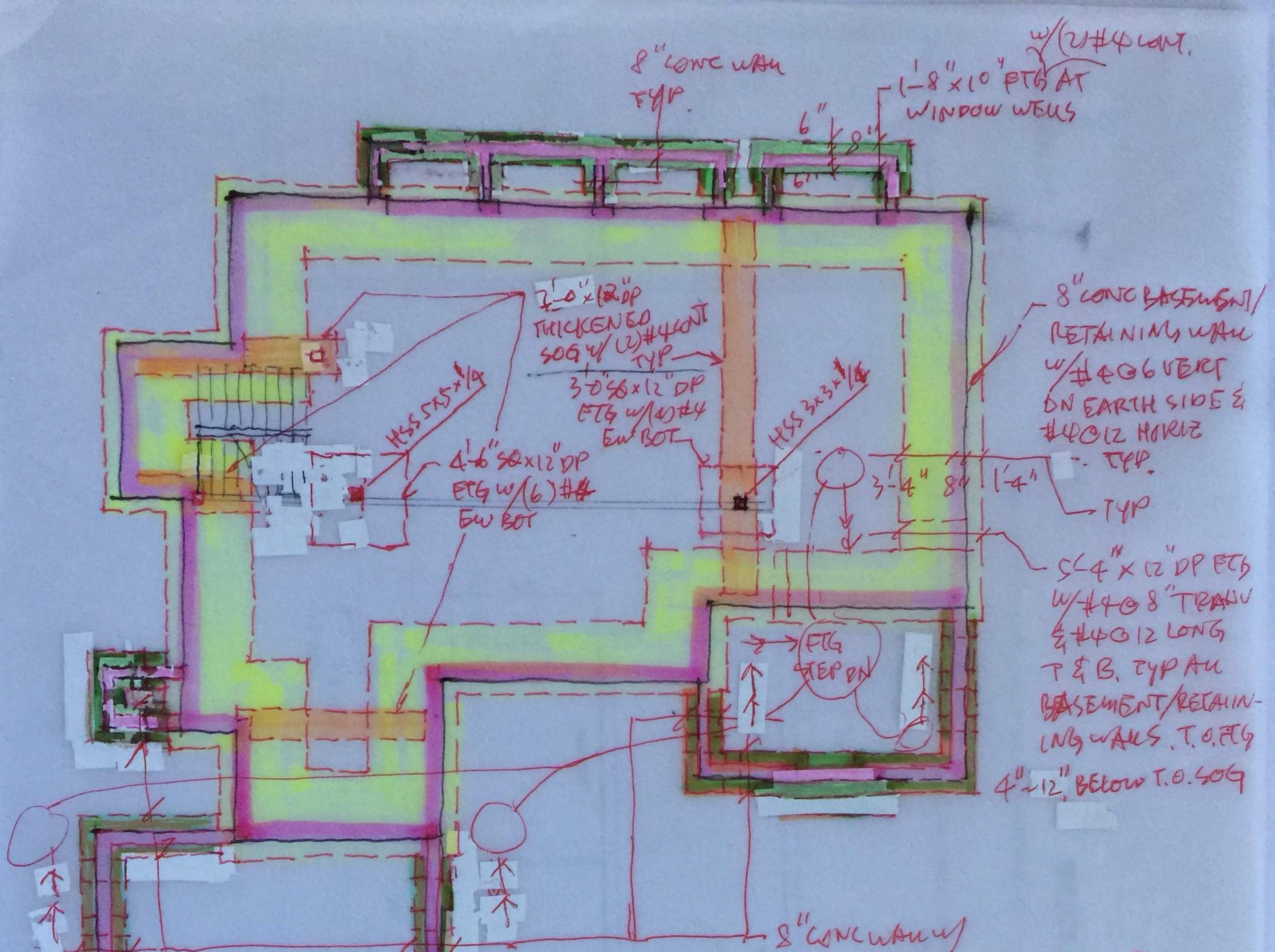

PROVIDE VERTICAL DOWELS OF SAME SIZE, NUMBER AND SPACING AS VERTICAL BARS.

7. GROUT – 5000 PSI MINIMUM 7-DAY CUBE STRENGTH PER ASTM C1157-00. GROUT TO BE PREMIXED, NON-SHRINK "MASTERFLOW 928 GROUT" BY MASTER BUILDERS OR APPROVED EQUAL. ICC CERTIFICATION REQUIRED. USE SPECIFIC GROUT MIX RECOMMENDED BY MANUFACTURER FOR EACH GROUT APPLICATION AND FOLLOW MANUFACTURER'S INSTRUCTIONS.

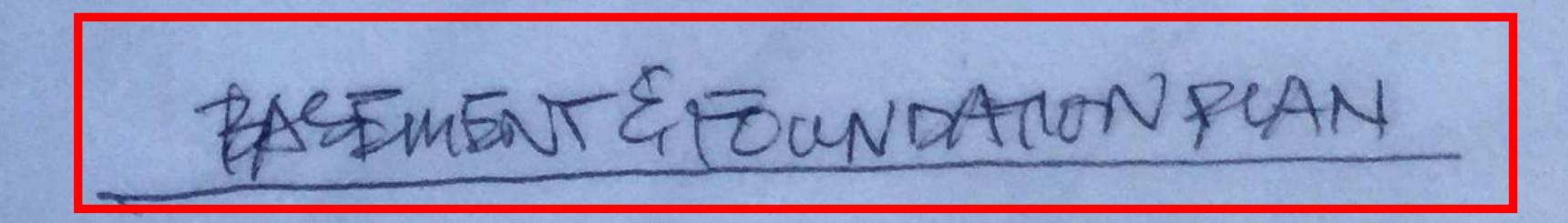

8. ANCHOR BOLTS, ASTM A307. SPECIAL INSPECTION REQUIRED. SET ALL ANCHOR BOLTS BY TEMPLATE WHEREVER POSSIBLE.

9. DRILL-IN EXPANSION BOLTS, "KWIK-BOLT TZ" BY HILTI FASTENING SYSTEMS BY HILTI FASTENING SYSTEM, OR APPROVED EQUAL. ICC CERTIFICATION REQUIRED (ERS-1917). SPECIAL INSPECTION REQUIRED.


10. DRILL-IN ADHESIVE BOLTS, "HIT RE-500" ADHESIVE ANCHOR SYSTEM BY HILTI FASTENING SYSTEM, OR APPROVED EQUAL. ICC CERTIFICATION REQUIRED (ESR-2322). SPECIAL INSPECTION REQUIRED.



2. 2) 2×120 24/2 W/ ROOP DECK 1/2' 3. 3) 2×120 16'oc w/ Plan DECK 1/2' 4. AU BM TOP FLUGH



2'0'AZ'OPETG W/(Z)#4 Cont. STEPETG PSREDD TYP.

Joist, header, and beam calculations *See Framing Plans for Beam Marks

Project Name				Page No.
Bm/Jst Location/Description:	roof joists	2x12@24"		
Roof				
dead load (psf)	15.00			
live load (psf)	25.00	additional total	point load (kips)	0.00
tributary width (ft)	2.00	point load locat	ion to farthest support (ft)	0.00
Floor				
dead load (psf)	15.00			
live load (psf)	40.00	additional total	point load (kips)	0.00
tributary width (ft)	0.00	point load locat	ion to farthest support (ft)	0.00
Wall				
wall weight (psf)	10.00			
height (ft)	0.00			
Beam Span (ft)	19.00			
load duration/repetitive factor	1.15		1.00	
Beam Data Base Number	5		2.0E PSL	
tributary load (plf)	80.00		#N/A	Beam No.61-88
moment (kip-ft)	3.61		Provided M	#N/A
shear/reaction (kips)	0.76		Provided V	#N/A
			Provided I	#N/A
	DF#2	Provided	24F-V4 or 24F-V8 DF GL	Provided
Required S (in^3)	30.14	31.64	15.70	#N/A
Required I (in^4)	158.63	177.98	158.63	#N/A
Required A (in^2)	10.44	16.88	3.21	#N/A
Size	2x12	Beam No.1-20	#N/A	Beam No.20-60

Bm/Jst Location/Description:	roof top de	eck (2)2x12@16"		
Roof				
dead load (psf)	15.00			
live load (psf)	60.00	additional total	point load (kips)	0.00
tributary width (ft)	0.67	point load locat	ion to farthest support (ft)	0.00
Floor				
dead load (psf)	15.00			
live load (psf)	40.00	additional total	point load (kips)	0.00
tributary width (ft)	0.00	point load locat	ion to farthest support (ft)	0.00
Wall				
wall weight (psf)	10.00			
height (ft)	0.00			
Beam Span (ft)	19.00			
load duration/repetitive factor	1.00		1.00	
Beam Data Base Number	5		2.0E PSL	
tributary load (plf)	50.25		#N/A	Beam No.61-88
moment (kip-ft)	2.27		Provided M	#N/A
shear/reaction (kips)	0.48		Provided V	#N/A
			Provided I	#N/A
	DF#2	Provided	24F-V4 or 24F-V8 DF GL	Provided
Required S (in^3)	21.77	31.64	11.34	#N/A
Required I (in^4)	99.64	177.98	99.64	#N/A
Required A (in^2)	7.54	16.88	4.34	#N/A
Size	2x12	Beam No.1-20	#N/A	Beam No.20-60

Project Name				Page No.
Bm/Jst Location/Description:	roof top de	eck 2x12@16"		
Roof				
dead load (psf)	15.00			
live load (psf)	60.00	additional total	point load (kips)	0.00
tributary width (ft)	1.33	point load locat	ion to farthest support (ft)	0.00
Floor				
dead load (psf)	15.00			
live load (psf)	40.00	additional total	point load (kips)	0.00
tributary width (ft)	0.00	point load locat	ion to farthest support (ft)	0.00
Wall				
wall weight (psf)	10.00			
height (ft)	0.00			
Beam Span (ft)	9.33			
load duration/repetitive factor	1.00		1.00	
Beam Data Base Number	5		2.0E PSL	
tributary load (plf)	99.75		#N/A	Beam No.61-88
moment (kip-ft)	1.09		Provided M	#N/A
shear/reaction (kips)	0.47		Provided V	#N/A
			Provided I	#N/A
	DF#2	Provided	24F-V4 or 24F-V8 DF GL	Provided
Required S (in^3)	10.42	31.64	5.43	#N/A
Required I (in^4)	23.42	177.98	23.42	#N/A
Required A (in^2)	7.35	16.88	2.11	#N/A
Size	2x12	Beam No.1-20	#N/A	Beam No.20-60

Bm/Jst Location/Description:	D1			
Roof	R I			
	45.00			
dead load (psf)	15.00			0.00
live load (psf)	25.00		point load (kips)	0.00
tributary width (ft)	9.00	point load locat	ion to farthest support (ft)	0.00
Floor				
dead load (psf)	15.00			
live load (psf)	40.00	additional total	point load (kips)	0.00
tributary width (ft)	0.00	point load locat	ion to farthest support (ft)	0.00
Wall				
wall weight (psf)	10.00			
height (ft)	0.00			
Beam Span (ft)	7.00			
load duration/repetitive factor	1.00		1.00	
Beam Data Base Number	9		2.0E PSL	
tributary load (plf)	360.00		#N/A	Beam No.61-88
moment (kip-ft)	2.21		Provided M	#N/A
shear/reaction (kips)	1.26		Provided V	#N/A
			Provided I	#N/A
	DF#2	Provided	24F-V4 or 24F-V8 DF GL	Provided
Required S (in^3)	21.17	30.66	11.03	#N/A
Required I (in^4)	35.70	111.15	35.70	#N/A
Required A (in^2)	19.90	25.38	5.73	#N/A
Size	4x8	Beam No.1-20	#N/A	Beam No.20-60

Project Name				Page No.
Bm/Jst Location/Description:	R2			
Roof				
dead load (psf)	15.00			
live load (psf)	25.00	additional total	point load (kips)	0.00
tributary width (ft)	12.00	point load locat	ion to farthest support (ft)	0.00
Floor				
dead load (psf)	15.00			
live load (psf)	40.00	additional total	point load (kips)	0.00
tributary width (ft)	0.00	point load locat	ion to farthest support (ft)	0.00
Wall				
wall weight (psf)	10.00			
height (ft)	0.00			
Beam Span (ft)	12.50			
load duration/repetitive factor	1.00		1.00	
Beam Data Base Number	17		2.0E PSL	
tributary load (plf)	480.00		#N/A	Beam No.61-88
moment (kip-ft)	9.38		Provided M	#N/A
shear/reaction (kips)	3.00		Provided V	#N/A
			Provided I	#N/A
	DF#2	Provided	24F-V4 or 24F-V8 DF GL	Provided
Required S (in^3)	90.00	121.23	46.88	#N/A
Required I (in^4)	271.02	697.07	271.02	#N/A
Required A (in^2)	47.37	63.25	27.27	#N/A
Size	6x12	Beam No.1-20	#N/A	Beam No.20-60

Bm/Jst Location/Description:	R3			
Roof				
dead load (psf)	15.00			
live load (psf)	60.00	additional total	point load (kips)	0.00
tributary width (ft)	5.00	point load locat	ion to farthest support (ft)	0.00
Floor				
dead load (psf)	15.00			
live load (psf)	40.00	additional total	point load (kips)	0.00
tributary width (ft)	0.00	point load locat	ion to farthest support (ft)	0.00
Wall				
wall weight (psf)	10.00			
height (ft)	3.00			
Beam Span (ft)	9.00			
load duration/repetitive factor	1.00		1.00	
Beam Data Base Number	10		2.0E PSL	
tributary load (plf)	405.00		#N/A	Beam No.61-88
moment (kip-ft)	4.10		Provided M	#N/A
shear/reaction (kips)	1.82		Provided V	#N/A
			Provided I	#N/A
	DF#2	Provided	24F-V4 or 24F-V8 DF GL	Provided
Required S (in^3)	39.37	49.91	20.50	#N/A
Required I (in^4)	85.35	230.84	85.35	#N/A
Required A (in^2)	28.78	32.38	8.28	#N/A
Size	4x10	Beam No.1-20	#N/A	Beam No.20-60

Project Name					Page No.
Bm/Jst Location/Description:	R4				
Roof					
dead load (psf)	1	<mark>15.00</mark>			
live load (psf)	2	2 <u>5.00</u>	additional total	point load (kips)	0.00
tributary width (ft)		7.00	point load locat	ion to farthest support (ft)	0.00
Floor					
dead load (psf)	1	<mark>15.00</mark>			
live load (psf)	4	<mark>40.00</mark>	additional total	point load (kips)	0.00
tributary width (ft)		0.00	point load locat	ion to farthest support (ft)	0.00
Wall					
wall weight (psf)	1	<mark>10.00</mark>			
height (ft)		0.00	both 2nd and 3r		
Beam Span (ft)		9.00			
load duration/repetitive factor		1.00		1.00	
Beam Data Base Number	9)		2.0E PSL	
tributary load (plf)	28	30.00		#N/A	Beam No.61-88
moment (kip-ft)		2.84		Provided M	#N/A
shear/reaction (kips)		1.26		Provided V	#N/A
				Provided I	#N/A
	DF	#2	Provided	24F-V4 or 24F-V8 DF GL	Provided
Required S (in^3)	2	27.22	30.66	14.18	#N/A
Required I (in^4)	5	59.01	111.15	59.01	#N/A
Required A (in^2)	1	19.90	25.38	11.45	#N/A
Size	4 x	(8	Beam No.1-20	#N/A	Beam No.20-60

Bm/Jst Location/Description:	R5			
Roof				
dead load (psf)	15.00			
live load (psf)	60.00	additional total	point load (kips)	1.01
tributary width (ft)	1.33	point load locat	ion to farthest support (ft)	9.00
Floor				
dead load (psf)	15.00			
live load (psf)	40.00	additional total	point load (kips)	1.00
tributary width (ft)	0.00	point load locat	ion to farthest support (ft)	14.00
Wall				
wall weight (psf)	10.00			
height (ft)	0.00			
Beam Span (ft)	18.50			
load duration/repetitive factor	1.00		1.00	
Beam Data Base Number	17		2.0E PSL	
tributary load (plf)	99.75		#N/A	Beam No.61-88
moment (kip-ft)	12.35		Provided M	#N/A
shear/reaction (kips)	2.17		Provided V	#N/A
			Provided I	#N/A
	DF#2	Provided	24F-V4 or 24F-V8 DF GL	Provided
Required S (in^3)	118.58	121.23	61.76	#N/A
Required I (in^4)	528.50	697.07	528.50	#N/A
Required A (in^2)	34.30	63.25	9.87	#N/A
Size	6x12	Beam No.1-20	#N/A	Beam No.20-60

Project Name				Page No.
Bm/Jst Location/Description:	garage roo	of joists 2x12@1	6"	
Roof				
dead load (psf)	15.00			
live load (psf)	25.00	additional total	point load (kips)	0.00
tributary width (ft)	1.33	point load locat	ion to farthest support (ft)	0.00
Floor				
dead load (psf)	15.00			
live load (psf)	40.00	additional total	point load (kips)	0.00
tributary width (ft)	0.00	point load locat	ion to farthest support (ft)	0.00
Wall				
wall weight (psf)	10.00			
height (ft)	0.00			
Beam Span (ft)	21.00			
load duration/repetitive factor	1.00		1.00	
Beam Data Base Number	5		2.0E PSL	
tributary load (plf)	53.20		#N/A	Beam No.61-88
moment (kip-ft)	2.93		Provided M	#N/A
shear/reaction (kips)	0.56		Provided V	#N/A
			Provided I	#N/A
	DF#2	Provided	24F-V4 or 24F-V8 DF GL	Provided
Required S (in^3)	28.15	31.64	14.66	#N/A
Required I (in^4)	142.43	177.98	142.43	#N/A
Required A (in^2)	8.82	16.88	5.08	#N/A
Size	2x12	Beam No.1-20	#N/A	Beam No.20-60

Bm/Jst Location/Description:	typical floo	or joists		
Roof		•		
dead load (psf)	15.00			
live load (psf)	25.00	additional total	point load (kips)	0.00
tributary width (ft)	0.00	point load locat	ion to farthest support (ft)	0.00
Floor				
dead load (psf)	15.00			
live load (psf)	40.00		point load (kips)	0.00
tributary width (ft)	1.33	point load locat	ion to farthest support (ft)	0.00
Wall				
wall weight (psf)	10.00			
height (ft)	0.00			
Beam Span (ft)	18.50			
load duration/repetitive factor	1.00		1.00	
Beam Data Base Number	5		2.0E PSL	
tributary load (plf)	73.15		#N/A	Beam No.61-88
moment (kip-ft)	3.13		Provided M	#N/A
shear/reaction (kips)	0.68		Provided V	#N/A
			Provided I	#N/A
	DF#2	Provided	24F-V4 or 24F-V8 DF GL	Provided
Required S (in^3)	30.04	31.64	15.65	#N/A
Required I (in^4)	133.89	177.98	133.89	#N/A
Required A (in^2)	10.68	16.88		#N/A
Size	2x12	Beam No.1-20	#N/A	Beam No.20-60

Project Name				Page No.
Bm/Jst Location/Description:	U1			
Roof				
dead load (psf)	15.00			
live load (psf)	25.00	additional total	point load (kips)	0.00
tributary width (ft)	9.00	point load locat	ion to farthest support (ft)	0.00
Floor				
dead load (psf)	15.00			
live load (psf)	40.00	additional total	point load (kips)	0.00
tributary width (ft)	2.00	point load locat	ion to farthest support (ft)	0.00
Wall				
wall weight (psf)	10.00			
height (ft)	12.00			
Beam Span (ft)	12.50			
load duration/repetitive factor	1.00		1.00	
Beam Data Base Number	17		2.0E PSL	
tributary load (plf)	590.00		#N/A	Beam No.61-88
moment (kip-ft)	11.52		Provided M	#N/A
shear/reaction (kips)	3.69		Provided V	#N/A
			Provided I	#N/A
	DF#2	Provided	24F-V4 or 24F-V8 DF GL	Provided
Required S (in^3)	110.63	121.23	57.62	#N/A
Required I (in^4)	333.13	697.07	333.13	#N/A
Required A (in^2)	58.23	63.25	16.76	#N/A
Size	6x12	Beam No.1-20	#N/A	Beam No.20-60

Bm/Jst Location/Description:	U2			
Roof				
dead load (psf)	15.00			
live load (psf)	25.00	additional total	point load (kips)	0.00
tributary width (ft)	0.00	point load locat	ion to farthest support (ft)	0.00
Floor				
dead load (psf)	15.00			
live load (psf)	40.00	additional total	point load (kips)	3.69
tributary width (ft)	10.50	point load locat	ion to farthest support (ft)	13.00
Wall				
wall weight (psf)	10.00			
height (ft)	12.00			
Beam Span (ft)	19.00			
load duration/repetitive factor	1.00		1.00	
Beam Data Base Number	50		2.0E PSL	
tributary load (plf)	697.50		#N/A	Beam No.61-88
moment (kip-ft)	46.61		Provided M	#N/A
shear/reaction (kips)	9.15		Provided V	#N/A
			Provided I	#N/A
	DF#2	Provided	24F-V4 or 24F-V8 DF GL	Provided
Required S (in^3)	447.48	280.73	233.06	285.63
Required I (in^4)	2048.25	2456.38	2048.25	2576.82
Required A (in^2)	144.47	96.25	83.17	111.38
Size	6x18	Beam No.1-20	6-3/4x16-1/2	Beam No.20-60

Project Name				Page No.
Bm/Jst Location/Description:	U 3			
Roof				
dead load (psf)	15.00			
live load (psf)	25.00	additional total	point load (kips)	0.00
tributary width (ft)	4.25	point load locat	ion to farthest support (ft)	0.00
Floor				
dead load (psf)	15.00			
live load (psf)	40.00	additional total	point load (kips)	0.00
tributary width (ft)	0.00	point load locat	ion to farthest support (ft)	0.00
Wall				
wall weight (psf)	10.00			
height (ft)	4.00			
Beam Span (ft)	16.00			
load duration/repetitive factor	1.00		1.00	
Beam Data Base Number	11		2.0E PSL	
tributary load (plf)	210.00		#N/A	Beam No.61-88
moment (kip-ft)	6.72		Provided M	#N/A
shear/reaction (kips)	1.68		Provided V	#N/A
			Provided I	#N/A
	DF#2	Provided	24F-V4 or 24F-V8 DF GL	Provided
Required S (in^3)	64.51	73.83	33.60	#N/A
Required I (in^4)	248.66	415.28	248.66	#N/A
Required A (in^2)	26.53	39.38	7.64	#N/A
Size	4x12	Beam No.1-20	#N/A	Beam No.20-60

Bm/Jst Location/Description:	U 4			
Roof				
dead load (psf)	15.00			
live load (psf)	25.00	additional total	point load (kips)	0.00
tributary width (ft)	7.00	point load locat	ion to farthest support (ft)	0.00
Floor				
dead load (psf)	15.00			
live load (psf)	40.00	additional total	point load (kips)	1.00
tributary width (ft)	5.00	point load locat	ion to farthest support (ft)	12.00
Wall				
wall weight (psf)	10.00			
height (ft)	12.00			
Beam Span (ft)	15.00			
load duration/repetitive factor	1.00		1.00	
Beam Data Base Number	35		2.0E PSL	
tributary load (plf)	675.00		#N/A	Beam No.61-88
moment (kip-ft)	21.38		Provided M	#N/A
shear/reaction (kips)	5.86		Provided V	#N/A
			Provided I	#N/A
	DF#2	Provided	24F-V4 or 24F-V8 DF GL	Provided
Required S (in^3)	205.29	280.73	106.92	123.00
Required I (in^4)	741.84	2456.38	741.84	738.00
Required A (in^2)	92.57	96.25	26.65	61.50
Size	6x18	Beam No.1-20	5-1/8x12	Beam No.20-60

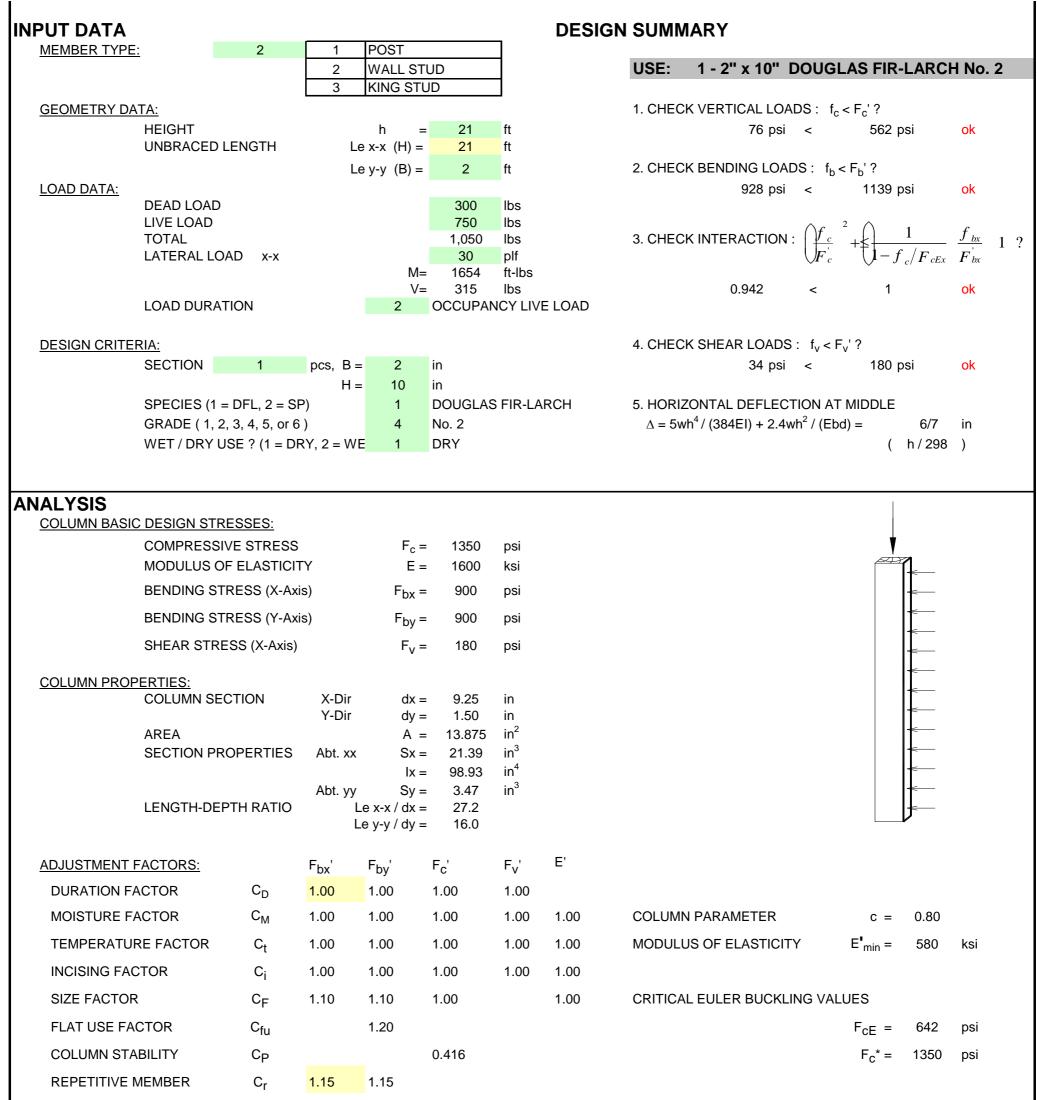
Project Name				Page No.
Bm/Jst Location/Description:	U5			
Roof				
dead load (psf)	15.00			
live load (psf)	25.00	additional total	point load (kips)	0.00
tributary width (ft)	0.00	point load locat	ion to farthest support (ft)	0.00
Floor				
dead load (psf)	15.00			
live load (psf)	60.00	additional total	point load (kips)	0.00
tributary width (ft)	3.50	point load locat	ion to farthest support (ft)	0.00
Wall				
wall weight (psf)	10.00			
height (ft)	4.00			
Beam Span (ft)	17.00			
load duration/repetitive factor	1.00		1.00	
Beam Data Base Number	17		2.0E PSL	
tributary load (plf)	302.50		#N/A	Beam No.61-88
moment (kip-ft)	10.93		Provided M	#N/A
shear/reaction (kips)	2.57		Provided V	#N/A
			Provided I	#N/A
	DF#2	Provided	24F-V4 or 24F-V8 DF GL	Provided
Required S (in^3)	104.91	121.23	54.64	#N/A
Required I (in^4)	472.61	697.07	472.61	#N/A
Required A (in^2)	40.60	63.25	23.37	#N/A
Size	6x12	Beam No.1-20	#N/A	Beam No.20-60

Bm/Jst Location/Description:	U6			
Roof				
dead load (psf)	15.00			
live load (psf)	25.00	additional total	point load (kips)	0.00
tributary width (ft)	11.00	point load locat	ion to farthest support (ft)	0.00
Floor				
dead load (psf)	15.00			
live load (psf)	40.00	additional total	point load (kips)	0.00
tributary width (ft)	6.00	point load locat	ion to farthest support (ft)	0.00
Wall				
wall weight (psf)	10.00			
height (ft)	12.00			
Beam Span (ft)	16.50			
load duration/repetitive factor	1.00		1.00	
Beam Data Base Number	36		2.0E PSL	
tributary load (plf)	890.00		#N/A	Beam No.61-88
moment (kip-ft)	30.29		Provided M	#N/A
shear/reaction (kips)	7.34		Provided V	#N/A
			Provided I	#N/A
	DF#2	Provided	24F-V4 or 24F-V8 DF GL	Provided
Required S (in^3)	290.76	280.73	151.44	163.65
Required I (in^4)	1155.78	2456.38	1155.78	1050.79
Required A (in^2)	115.94	96.25	33.37	69.19
Size	6x18	Beam No.1-20	5-1/8x13-1/2	Beam No.20-60

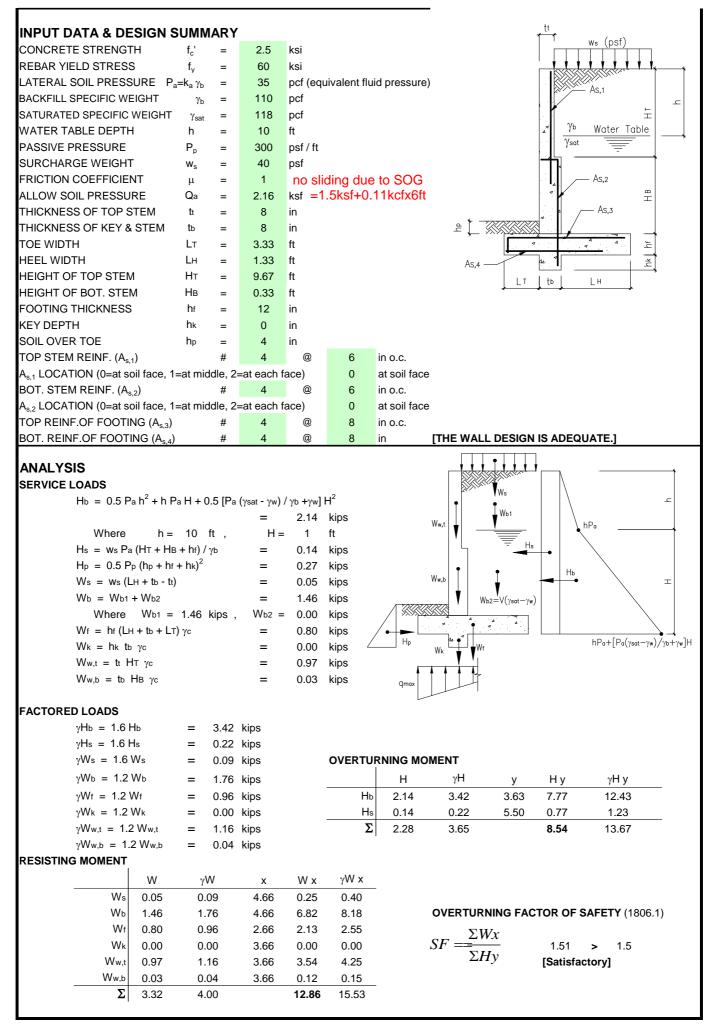
Project Name				Page No.
Bm/Jst Location/Description:	U7			
Roof				
dead load (psf)	15.00			
live load (psf)	25.00	additional total	point load (kips)	0.00
tributary width (ft)	0.00	point load locat	ion to farthest support (ft)	0.00
Floor				
dead load (psf)	15.00			
live load (psf)	40.00	additional total	point load (kips)	0.00
tributary width (ft)	9.00	point load locat	ion to farthest support (ft)	0.00
Wall				
wall weight (psf)	10.00			
height (ft)	0.00			
Beam Span (ft)	14.00			
load duration/repetitive factor	1.00		1.00	
Beam Data Base Number	17		2.0E PSL	
tributary load (plf)	495.00		#N/A	Beam No.61-88
moment (kip-ft)	12.13		Provided M	#N/A
shear/reaction (kips)	3.47		Provided V	#N/A
			Provided I	#N/A
	DF#2	Provided	24F-V4 or 24F-V8 DF GL	Provided
Required S (in^3)	116.42	121.23	60.64	#N/A
Required I (in^4)	392.67	697.07	392.67	#N/A
Required A (in^2)	54.71	63.25	31.50	#N/A
Size	6x12	Beam No.1-20	#N/A	Beam No.20-60

Bm/Jst Location/Description:	U 8			
Roof				
dead load (psf)	15.00			
live load (psf)	25.00	additional total	point load (kips)	1.01
tributary width (ft)	0.00	point load locat	ion to farthest support (ft)	9.00
Floor				
dead load (psf)	15.00			
live load (psf)	40.00	additional total	point load (kips)	1.00
tributary width (ft)	4.00	point load locat	ion to farthest support (ft)	14.00
Wall				
wall weight (psf)	10.00			
height (ft)	0.00			
Beam Span (ft)	18.50			
load duration/repetitive factor	1.00		1.00	
Beam Data Base Number	35		2.0E PSL	
tributary load (plf)	220.00		#N/A	Beam No.61-88
moment (kip-ft)	17.50		Provided M	#N/A
shear/reaction (kips)	3.28		Provided V	#N/A
			Provided I	#N/A
	DF#2	Provided	24F-V4 or 24F-V8 DF GL	Provided
Required S (in^3)	167.97	280.73	87.48	123.00
Required I (in^4)	748.60	2456.38	748.60	738.00
Required A (in^2)	51.86	96.25	14.93	61.50
Size	6x18	Beam No.1-20	5-1/8x12	Beam No.20-60

Project Name				Page No.
Bm/Jst Location/Description:	U9 Steel G	irder		
Roof				
dead load (psf)	15.00			
live load (psf)	25.00	additional total	point load (kips)	0.00
tributary width (ft)	14.50	point load locat	ion to farthest support (ft)	0.00
Floor				
dead load (psf)	15.00			
live load (psf)	40.00	additional total	point load (kips)	0.00
tributary width (ft)	14.50	point load locat	ion to farthest support (ft)	0.00
Wall				
wall weight (psf)	10.00			
height (ft)	12.00			
Beam Span (ft)	38.50			
load duration/repetitive factor	1.00		1.00	
Beam Data Base Number	5			
tributary load (plf)	1497.50			W24x76
moment (kip-ft)	277.46	Sr	141.50	176.00
shear/reaction (kips)	28.83	Ir	1986.88	3 2100.00
				bf=9"
			shaped 4x10 nailer on to	p

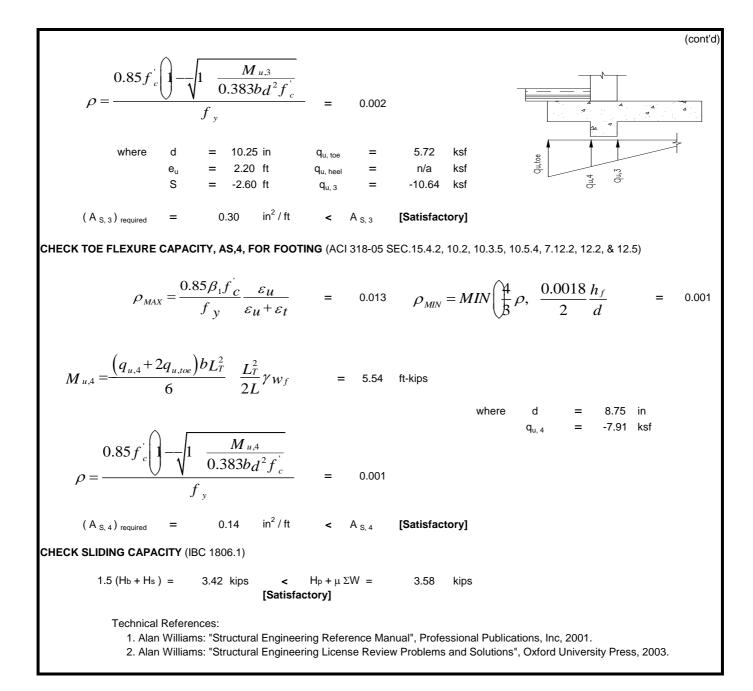

Bm/Jst Location/Description:	M1			
Roof				
dead load (psf)	15.00			
live load (psf)	25.00	additional total	point load (kips)	0.00
tributary width (ft)	9.50	point load locat	ion to farthest support (ft)	0.00
Floor				
dead load (psf)	15.00	both main and u	ipper floors	
live load (psf)	40.00		point load (kips)	0.00
tributary width (ft)	19.00	point load locat	ion to farthest support (ft)	0.00
Wall				
wall weight (psf)	10.00			
height (ft)	24.00			
Beam Span (ft)	6.00			
load duration/repetitive factor	1.00		1.00	
Beam Data Base Number	17		2.0E PSL	
tributary load (plf)	1665.00		#N/A	Beam No.61-88
moment (kip-ft)	7.49		Provided M	#N/A
shear/reaction (kips)	5.00		Provided V	#N/A
			Provided I	#N/A
	DF#2	Provided	24F-V4 or 24F-V8 DF GL	Provided
Required S (in^3)	71.93	121.23	37.46	#N/A
Required I (in^4)	103.97	697.07	103.97	#N/A
Required A (in^2)	59.15			
Size	6x12	Beam No.1-20	#N/A	Beam No.20-60

Project Name				Page No.
Bm/Jst Location/Description:	M2			
Roof				
dead load (psf)	15.00			
live load (psf)	25.00	additional total	point load (kips)	0.00
tributary width (ft)	0.00	point load locat	ion to farthest support (ft)	0.00
Floor				
dead load (psf)	15.00			
live load (psf)	40.00	additional total	point load (kips)	0.00
tributary width (ft)	14.50	point load locat	ion to farthest support (ft)	0.00
Wall				
wall weight (psf)	10.00			
height (ft)	12.00			
Beam Span (ft)	25.00			
load duration/repetitive factor	1.00		1.00	
Beam Data Base Number	5			
tributary load (plf)	917.50			W18x35
moment (kip-ft)	71.68	Sr	36.56	57.60
shear/reaction (kips)	11.47	lr	333.31	510.00
footing				bf=6"
			shaped 4x8 nailer on top	
reaction from U9	28.83			
reaction from M2	11.47			
4.5x4.5x2ksf=40.5 kips	40.30	kips		
		•		


Typical Wall Stud Calculations (see wind force calculations for lateral forces on stud)

NPUT DATA MEMBER TYPE:		2	1	POST		٦	DEGIG	SN SUMM						
WEWDER ITFE.		2	2	WALL ST	חח	-		USE:	1 - 2" x 6" [DOUGI	AS FIR	-I ARCH	No. 2	2
			3	KING STU				002.				LANON	110.7	-
GEOMETRY DAT	<u> </u>							1. CHECK	VERTICAL LO	ADS: f _c	, < F _c ' ?			
	IEIGHT			h =		ft			170 ps	<	610) psi	ok	
l	JNBRACED LE	NGTH		e x-x (H) =		ft								
			Le	e y-y (B) =	2	ft		2. CHECK	BENDING LOA	~	< F _b ' ? 1346	2 poi	ok	
LOAD DATA: [DEAD LOAD				400	lbs			657 ps		1340	p psi	UK	
	IVE LOAD				1000	lbs				$\bigcap f$	2	1	f.	
	'OTAL .ATERAL LOAD) x-x			1,400 30	lbs plf		3. CHECK		$\int \frac{p}{F_c}$	+≰ <u></u> \1-	f_{cFx}	$\frac{J bx}{F bx}$	1
				M=		ft-lbs					•			
L	OAD DURATIO	ON		V= 2	180 OCCUPA	lbs NCY LIV	/E LOAD		0.920	<	1		ok	
						-	-							
DESIGN CRITERI								4. CHECK	SHEAR LOAD	•	•			
S	SECTION	1	pcs, B =		in in				33 psi	<	180) psi	ok	
ç	SPECIES (1 = D)FL 2 = SP) H =		in DOUGLA	S FIR-L	ARCH	5 HORIZ	ONTAL DEFLEC		ו ומסוח	=		
	GRADE (1, 2, 3				No. 2	∟/			⁴ / (384El) + 2.4			3/7	in	
١	VET / DRY USE	E ? (1 = DR	Y, 2 = WI	E 1	DRY					·		(h/335)	
NALYSIS												1		
COLUMN BASIC I	DESIGN STRES	SSES:												
	COMPRESSIVE			F _c =	1350	psi						¥ l		
Ν	NODULUS OF I	ELASTICIT	Y	E =	1600	ksi								
E	BENDING STRE	ESS (X-Axis	6)	F _{bx} =	900	psi						<		
E	BENDING STRE	ESS (Y-Axis	3)	F _{by} =	900	psi						<		
ç	SHEAR STRES	S (X-Axis)		F _v =		psi						<u>ج</u>		
		()		v		•						<		
COLUMN PROPE	<u>RTIES:</u> COLUMN SECT		X-Dir	dx =	5.50	in						<──		
· · · · · · · · · · · · · · · · · · ·			X-Dir Y-Dir	dy =		in						<		
				A =		in ²						-		
Ś	SECTION PROF	PERTIES	Abt. xx	Sx = lx =		in ³ in ⁴								
			Abt. yy	Sy =		in ³						<		
L	ENGTH-DEPT	H RATIO		_e x-x / dx =										
			L	.e y-y / dy =	16.0									
ADJUSTMENT FA	CTORS:		F _{bx} '	F _{by} '	F _c '	F _v '	E'							
DURATION FAC		CD	1.00	1.00	1.00	v 1.00								
MOISTURE FAC		с _р С _М	1.00	1.00	1.00	1.00	1.00		PARAMETER		С =	= 0.80		
TEMPERATURE										тv	-		ko:	
		C _t	1.00	1.00	1.00	1.00	1.00		S OF ELASTICI	11	E [¶] min =	= 580	ksi	
INCISING FACT	UK	Ci	1.00	1.00	1.00	1.00	1.00							
SIZE FACTOR		CF	1.30	1.30	1.10		1.00	CRITICAL	EULER BUCK	LING VAI	LUES			
FLAT USE FACT	TOR	C _{fu}		1.15							F _{cE} =	- 696	psi	
COLUMN STAB	LITY	CP			0.411						F _c * =	= 1485	psi	
REPETITIVE ME	MBER	Cr	1.15	1.15										
BEAM STABILIT	Y	C _L	1.00	1.00										
		L												
ADJUSTED PROP	PERTIES:													
η	IODULUS OF I	ELASTICIT	Y	E' =	1600	ksi		AXIAL ST	RESS	F _c ' =	610	psi		
E	BENDING STRE	ESS (X-Axis	6)	F _{bx} '=	1346	psi		SHEAR S	TRESS	F _v ' =	180	psi		
E	BENDING STRE	ESS (Y-Axis	3)	F _{by} '=		psi								
		、		Бу		•								
ACTUAL STRESS														
A	XIAL STRESS			f _C =	169.7	psi		SHEAR S	TRESS	$f_V =$	33	psi		

Typical Wall Stud Calculations (where applicable to this project)


BEAN	/I STABILITY	CL	1.00	1.00						
<u>ADJUS</u>	TED PROPERTIES:									
	MODULUS OF I	ELASTIC	ΤY	E' =	1600	ksi	AXIAL STRESS	F _c ' =	562	psi
	BENDING STRE	ESS (X-A	kis)	F _{bx} ' =	1139	psi	SHEAR STRESS	F _v ' =	180	psi
	BENDING STRE	ESS (Y-A	kis)	F _{by} '=	1366	psi				
<u>ACTUA</u>	L STRESSES:									
	AXIAL STRESS			$f_{C} =$	75.7	psi	SHEAR STRESS	f _V =	34	psi
	BENDING STRE	ESSES		$f_{bx} =$	927.7	psi				

CHECK SOL BEARING CAPACITY (ACI 318-05 SEC 15.2.2)

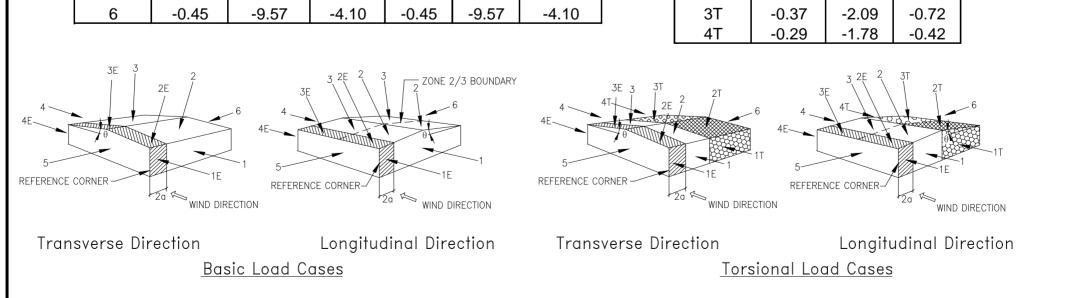
$$L = \frac{4}{2\pi} \quad t_{h} \quad L_{H} = 5.33 \quad h \qquad e = \frac{L}{2} \quad \frac{2245}{5W} \quad \frac{H_{Y}}{L} = 1.36 \quad h \qquad e = \frac{L}{2} \quad \frac{2245}{5W} \quad \frac{H_{Y}}{L} = 1.36 \quad h \qquad e = \frac{L}{2} \quad \frac{2245}{5W} \quad \frac{H_{Y}}{L} = 1.36 \quad h \qquad e = \frac{L}{2} \quad \frac{2245}{3R(0.5L-e)} \quad for \quad e > \frac{L}{6} \qquad = 1.70 \quad \text{ksl} \qquad < 0_{+} \qquad \text{(Satisfactory)} \qquad \text{(Satisfactory)} \qquad e = \frac{L}{3R(0.5L-e)} \quad for \quad e > \frac{L}{6} \qquad = 1.70 \quad \text{ksl} \qquad < 0_{+} \qquad \text{(Satisfactory)} \qquad e = \frac{L}{3R(0.5L-e)} \quad for \quad e > \frac{L}{6} \qquad = 1.70 \quad \text{ksl} \qquad < 0_{+} \qquad \text{(Satisfactory)} \qquad e = \frac{L}{3R(0.5L-e)} \quad for \quad e > \frac{L}{6} \qquad e = 1.70 \quad \text{ksl} \qquad < 0_{+} \qquad \text{(Satisfactory)} \qquad e = \frac{L}{3R(0.5L-e)} \quad for \quad e > \frac{L}{6} \qquad e = 1.70 \quad \text{ksl} \qquad < 0_{+} \qquad \text{(Satisfactory)} \qquad e = 1.22 \quad \text{(Satisfactory)} \qquad e = 0.25 \quad \text{(Satisfactory)}$$

Г

Seismic Mass Calculation				
Seismic Base at Main Floor with Concr	ete Base			
Floor areas (sqft)				
2nd		2180		
roof		1800		
Roof Framing Seismic Mass (psf)				
roof framing		14.00		
roofing (4.00 psf future PV panels)		6.00		
wall framing to diaphragm		5.00		
5 1 5	total	25.00 psf		
Floor Framing Seismic Mass (psf)		45.00		
floor framing		15.00		
wall framing to diaphragm	total	10.00		
	total	25.00 psf		
2nd				
seismic mass (area x floor framing seismi	c mass)	54.50 kips		
roof				
seismic mass (area x roof framing seismic	c mass)	45.00 kips		
Seismic Forces				
(per attached spreadsheet ca	lculations)			
roof	,	9.00 kips		
2nd		6.20		
	total	15.20 kips		
			NS	EW
ASD = Seismic Force/1.4			Cumulative	Cumulative
roof		6.43	6.43 kips	6.43 kips
2nd		4.43	10.86 kips	10.86 kips
	total	10.86 kips		
Wind Forces				
(per attached spreadsheet ca NS	iculations)	17.77 kips	1.12	
EW		19.83 kips	1.12	
_ v v		19.03 KIPS	NS	EW
NS			Cumulative	
roof = ((3'+12'/2)/28') x 17.77 kips		5.71	5.71 kips	
$2nd = (((12'+13')/2)/28') \times 17.77 \text{ kips}$		7.93	13.64 kips	
$2 - (((12 + 13)/2)/20) \times 17.77 \text{ kips}$	total	13.64 kips	13.04 KIPS	
EW	iolai	13.04 KIPS		Cumulative
roof = ((3'+12'/2)/28') x 19.83 kips		6.37		6.37 kips
$2nd = (((12'+13')/2)/28') \times 19.83 \text{ kips}$		8.85		15.22 kips
$L_{10} = (((12 \pm 10)/2)/20) \times 10.00 \text{ kps}$	total	15.22 kips		13.22 Kips
Lateral Force Summary (ASD)	iotai	10.22 NIPS		
			NS	EW
			Cumulative	Cumulative

NS	EW
Cumulative	Cumulative
6.43 kips	6.43 kips
13.64 kips	15.22 kips

Wind Force Calculations


Exposur Importar Basic wi	DATA e category (B, C or D) nce factor, pg 77, (0.87, 1.0 or 1.15) nd speed (IBC Tab 1609.3.1V _{3S}) phic factor (Sec.6.5.7.2, pg 26 & 45)	I = V = K _{zt} =	85 m 1.90	ategory II ph 110 mph	he		
Building Building Building	•	h _e = h _r = L = B = A =	28 ft 28 ft 62 ft 55 ft 10 ft	2		В	L
Max hor Max hor	N SUMMARY izontal force normal to building length, L, izontal force normal to building length, B al horizontal torsional load			=	= 17.7	•	27.76 kips at 110 mph 24.88 kips at 110 mph
	al upward force			=		7 kips	
Max tota ANALY Velocity q _h = 0.0	VSIS V pressure 00256 K _h K _{zt} K _d V ² I =			=		•	
Max tota ANALY Velocity	Al upward force /SIS <u>/ pressure</u>	eight, h. (Eq. 6-1 icient evaluated	5, page 27) at height, h		<u>= 39.5</u>	•	0.70 0.85 28.00 ft < 60 ft, [Satisfactory]
Max tota ANALY Velocity q _h = 0.0 where:	SIS Pressure PO256 $K_h K_{zt} K_d V^2 I =$ q_h = velocity pressure at mean roof here K_h = velocity pressure exposure coeffic K_d = wind directionality factor. (Tab. 6- h = mean roof height Pressures for MWFRS	eight, h. (Eq. 6-1 icient evaluated	5, page 27) at height, h		<u>= 39.5</u>	57 kips = =	0.85 28.00 ft
Max tota ANALY Velocity q _h = 0.0 where:	SIS Pressure PO256 $K_h K_{zt} K_d V^2 I =$ q_h = velocity pressure at mean roof here K_h = velocity pressure exposure coeffic K_d = wind directionality factor. (Tab. 6- h = mean roof height	eight, h. (Eq. 6-1 icient evaluated -4, for building, p 6-18, page 28). nd external pres nd internal press	5, page 27) at height, h bage 80) sure coeffic	, (Tab. 6-3, Case	<u>= 39.5</u> e 1,pg 79) e below. (Fig.	57 kips = = = =	0.85 28.00 ft < 60 ft, [Satisfactory] e 53 & 54)

Net Pressures (psf), Basic Load Cases

	Roof ar	ngle θ =	0.00	Roof ar	$g = \theta$	0.00
Surface	0.0	Net Press	sure with	0.0	Net Pre	ssure with
	G C _{p f}	(+GC _{pi})	(-GC _{p i})	G C _{p f}	$(+GC_{pi})$	(-GC _{pi})
1	0.40	3.34	8.81	0.40	3.34	8.81
2	-0.69	-13.21	-7.75	-0.69	-13.21	-7.75
3	-0.37	-8.35	-2.89	-0.37	-8.35	-2.89
4	-0.29	-7.14	-1.67	-0.29	-7.14	-1.67
1E	0.61	6.53	12.00	0.61	6.53	12.00
2E	-1.07	-18.98	-13.52	-1.07	-18.98	-13.52
3E	-0.53	-10.78	-5.32	-0.53	-10.78	-5.32
4E	-0.43	-9.26	-3.80	-0.43	-9.26	-3.80
5	-0.45	-9.57	-4.10	-0.45	-9.57	-4.10
6	-0.45	-9 57	-4 10	-0.45	-9 57	-4 10

Net Pressures (psf), Torsional Load Cases

	Roof an	gle $\theta =$	0.00		
Surface	<u> </u>	Net Pres	sure with		
	G C _{p f}	$(+GC_{pi})$	$(-GC_{pi})$		
1T	0.40	0.84	2.20		
2T	-0.69	-3.30	-1.94		
3T	-0.37	-2.09	-0.72		
4T	-0.29	-1.78	-0.42		
	Roof an	gle $\theta = 0.00$			
Surface	0.0	Net Pres	sure with		
	G C _{p f}	$(+GC_{pi})$	$(-GC_{pi})$		
1T	0.40	0.84	2.20		
2T	-0.69	-3.30	-1.94		
o.T	0.07	0.00	0 70		

0	Area	Pressure	(k) with	
Surface	(ft ²)	(+GC _{pi})	(-GC _{pi})	
1	1428	4.77	12.58	
2	1403	-18.53	-10.86	
3	1403	-11.71	-4.05	
4	1428	-10.19	-2.39	
1E	308	2.01	3.70	
2E	303	-5.74	-4.09	
3E	303	-3.26	-1.61	
4E	308	-2.85	-1.17	
Σ	Horiz.	19.83	19.83	
Δ	Vert.	-39.25	-20.61	
10 psf min.	Horiz.	17.36	17.36	
Sec. 6.1.4.1	Vert.	-34.10	-34.10	

Torsional Load Cases in Transverse Direction

Ourford	Area	Pressure	(k) with	Torsio	n (ft-k)
Surface	(ft ²)	$(+GC_{pi})$	(-GC _{p i})	$(+GC_{pi})$	$(-GC_{pi})$
1	560	1.87	4.93	24	63
2	550	-7.27	-4.26	0	0
3	550	-4.59	-1.59	0	0
4	560	-4.00	-0.94	51	12
1E	308	2.01	3.70	51	94
2E	303	-5.74	-4.09	0	0
3E	303	-3.26	-1.61	0	0
4E	308	-2.85	-1.17	73	30
1T	868	0.73	1.91	-11	-30
2T	853	-2.82	-1.65	0	0
3T	853	-1.78	-0.61	0	0
4T	868	-1.55	-0.36	-24	-6
Tota	l Horiz. Tor	sional Load	I, M _T	164	164

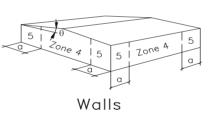
Basic Load Cases in Longitudinal DirectionBasic Load Cases in Longitudinal DirectionSurfaceArea(ft²)(+GCpi)(-GCpi)(-GCpi)

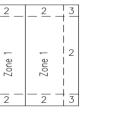
Currée e e	Alca	FIESSUIE	
Surface	(ft ²)	$(+GC_{pi})$	(-GC _{p i})
1	1232	4.12	10.85
2	1364	-18.02	-10.56
3	1364	-11.39	-3.94
4	1232	-8.79	-2.06
1E	308	2.01	3.70
2E	341	-6.47	-4.61
3E	341	-3.68	-1.81
4E	308	-2.85	-1.17
Σ	Horiz.	17.77	17.77
	Vert.	-39.57	-20.92
10 psf min.	Horiz.	15.40	15.40
Sec. 6.1.4.1	Vert.	-34.10	-34.10

Torsional Load Cases in Longitudinal Direction

Tererena			gitaamai	Bliottol	
0(Area	Pressure	(k) with	Torsio	n (ft-k)
Surface	(ft ²)	$(+GC_{pi})$	(-GC _{pi})	$(+GC_{pi})$	$(-GC_{pi})$
1	462	1.54	4.07	13	34
2	1023	-13.52	-7.92	0	0
3	1023	-8.55	-2.95	0	0
4	462	-3.30	-0.77	27	6
1E	308	2.01	3.70	44	81
2E	341	-6.47	-4.61	0	0
3E	341	-3.68	-1.81	0	0
4E	308	-2.85	-1.17	63	26
1T	770	0.64	1.70	-9	-23
2T	1364	-4.51	-2.64	0	0
3T	1364	-2.85	-0.98	0	0
4T	770	-1.37	-0.32	-19	-4
Total	Horiz. Tors	sional Load	d, M _T	119.2	119.2

Design pressures for components and cladding


 $p = q_h[(G C_p) - (G C_{pi})]$


where: p = pressure on component. (Eq. 6-22, pg 28)

p_{min} = 10 psf (Sec. 6.1.4.2, pg 21)

G C_p = external pressure coefficient.

see table below. (Fig. 6-11, page 55~58)

Roof $\theta \leq 7^{\circ}$

2

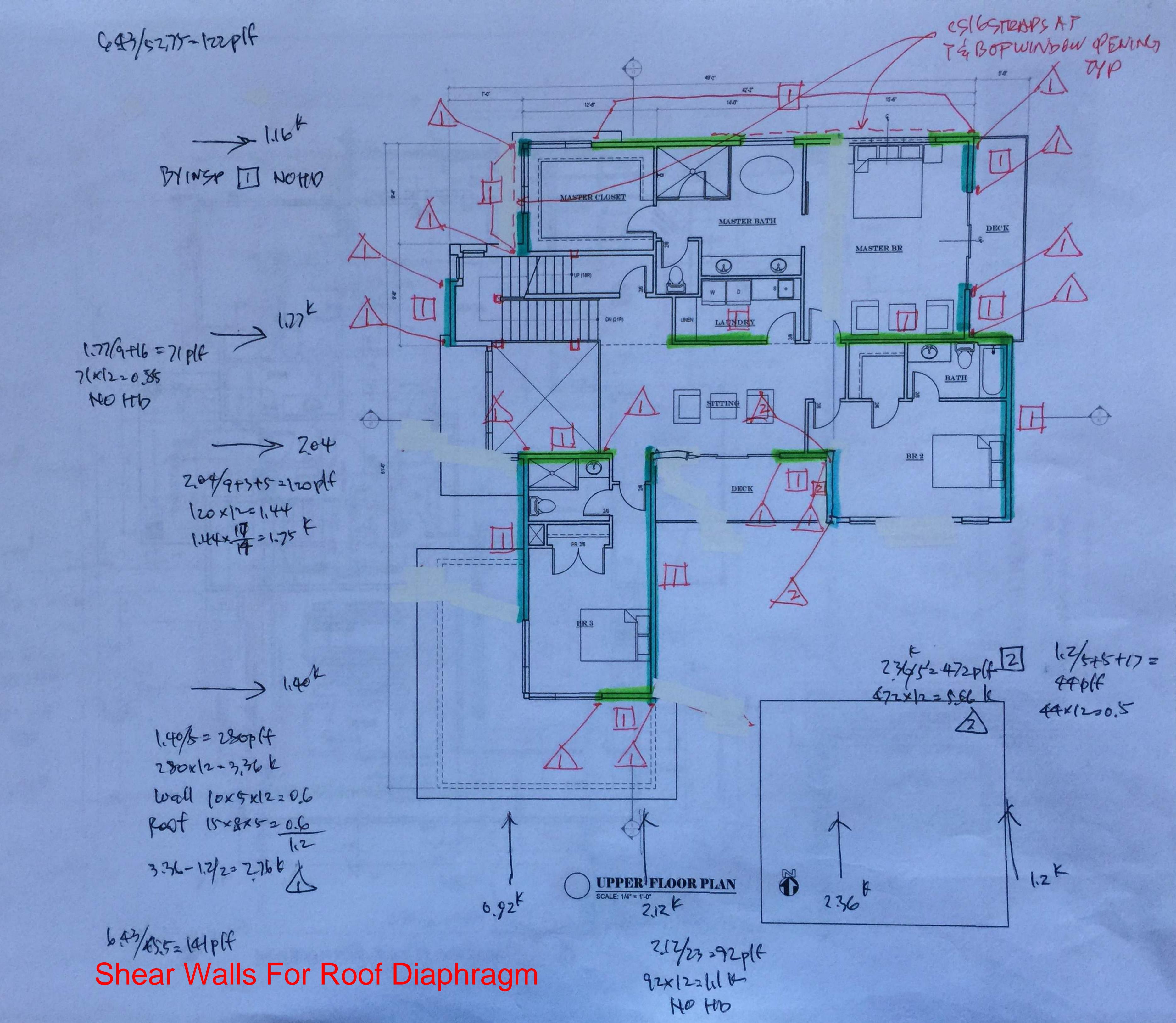
Roof $\theta > 7^{\circ}$

	Effective	Zon	e 1	Zo	one 2	Zoi	ne 3	Zon	e 4	Zor	ne 5
	Area (ft ²)	GC _₽	- GC _P	GC _₽	- GC _P	GC _₽	- GC _P	GC _P	- GC _P	GC _₽	- GC _P
Comp.	10	0.30	-1.00	0.30	-1.80	0.30	-2.80	0.90	-0.99	0.90	-1.26
							/\ ^	/alla na dura			

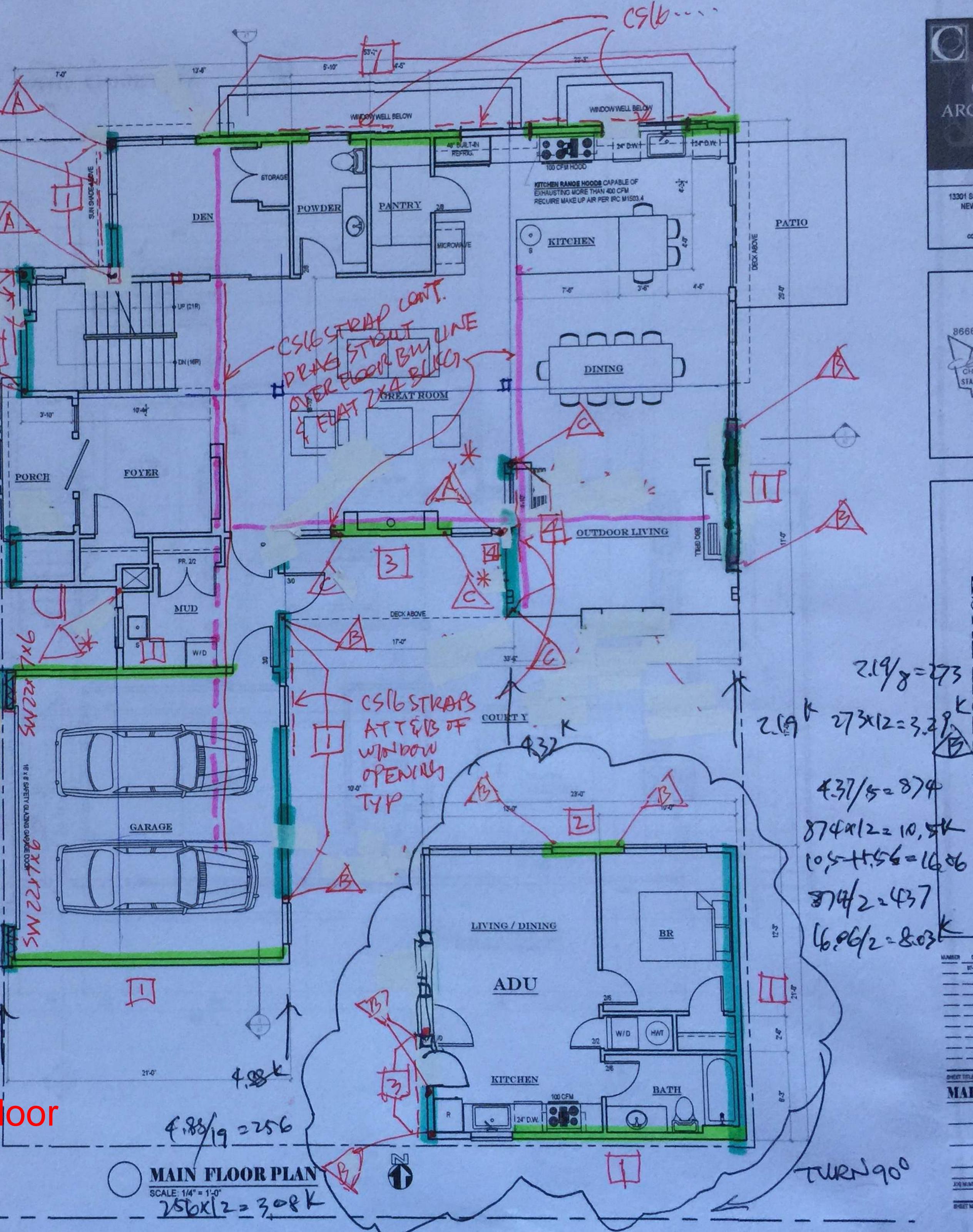
(Walls reduced 10 %, Fig. 6-11A note 5.)

Ducasing	Zone 2 Zone 3		le 5	Zone 4		Zone 5	
Pressure Positive Negative	Positive Negative	Positive	Negative	Positive	Negative	Positive	Negative
(psf) 10.00 -17.92	10.00 -30.07	10.00	-45.26	16.40	-17.77	16.40	-21.87

Seismic Force Calculations


INPUT	DATA							DESIGI	N SUMI	MARY				
Typical f	loor heigh	nt		h =	9.0	ft		Total bas	e shear					
Typical f	loor weigl	ht		$W_x =$	45	k		V	=	0.15 \	<i>N</i> , (SD)	=	15	k, (SD)
Number	of floors			n =	2				=	0.11 \	N, (ASC) =	11	k, (ASD)
Importan	nce factor	(ASCE 11.	5.1)	l =	1.00	(IBC Tab.1604.5)		Seismic o	design ca	ategory		=	D	
Building				Zip Code	98040			Latitude:		47.562605				
Site clas	s (A, B, C	C, D, E, F)			D	(If no soil report, u	se D)	Longitud	e:	-122.2254				
The coef	fficient (A	SCE Tab 12	2.8-2)	$C_t =$	0.02			S _S =	147.595	%g , S _{ms} =	1.476	g, $F_a =$	1.000	
The coef	fficient(AS	SCE Tab. 12	2.2.1)	R =	6.50			S ₁ =	50.091	%g , S _{m1} =	0.751	g, $F_v =$	1.500	
								S _{DS} =	0.984	g ,	S _{D1} =	0.501	g	
					<i>c.</i>		4.00				0 75			
		h _n	=	23.0	ft	k =	1.00	, (ASCE 12.	8.3, pg 130)	x =		•	,	
		W	=	100	k	$\Sigma w_{x}h^{k} =$	1,	750		T _a = C	$S_t(h_n)^x =$	0.21	Sec, (AS	CE 12.8.2.1)
				Ň	/ERTIC	AL DISTRIBU		OF LATE	RAL FO	RCES				
Level	Level	Floor to flo	or	Height	Weight			Lateral for	orce @ e	each level		<u>Dia</u>	phragm f	force
No.	Name	Height		h _x	W _x	w _x h _x ^k	C_{vx}	F _x	V _x	O. M.		ΣF_i	ΣW_i	F _{px}
		ft		ft	k			k	k	k-ft		k	k	k
2	Poof			23.0	15	1 035	0 501	0.0				9.0	15	Q

		ft	ft	K			K	K	K-ft	K	K	K
2	Roof		23.0	45	1,035	0.591	9.0			9.0	45	9
		10.00						9.0				
1	2nd		13.0	55	715	0.409	6.2		90	15.1	100	11
		13.00						15.1				
	Ground		0.0						286			


643/5275-122plf

NOHO

643/455=141pff

c516° 3,71 5.0 31 3.95 3.95/16 = 247plf 247×12=2.96 WARE ACTIV = 9.13/3=3 5E CONC. DRIVEWAY 9.97/2= 2.46 4.92 no to 2724 Shear Walls For Upper Floor 27/12-16= 150 plf 150×12=1.8K A

	SHEARWALL SCHEDULE											
LABEL	APA RATED SHEATHING	NAILING AT PANEL	RIM JOIST OR BLOCK CONNECTION	BOTTOM PLATE ATTACHMENT TO	SILL PLATE /	ATTACHMENT	CAPACITY					
	(STRUC I)	EDGES	TO TOP PLATE	WOOD BELOW	ANCHOR BOLT	SILL PLATE SIZE	– (plf)					
1	15/32" PLYWOOD SHEATHING, ONE SIDE	10d @ 6"OC	LTP4 @ 18" OC	16d 🞯 6" OC	5/8" @ 48" OC (7" MIN EMBED)	2X	340					
2	15/32" PLYWOOD SHEATHING, ONE SIDE	10d @ 4" OC	LTP4 @ 12" OC	¾"ø LAG OR SIMPSON SDS Ø 8" OC	5/8" @ 32" OC (7" MIN EMBED)	3X	510					
3	15/32" PLYWOOD SHEATHING, ONE SIDE	10d @ 3" OC	LTP4 @ 9" OC	¾"ø LAG OR SIMPSON SDS @ 6" OC	5/8" @ 24" OC (7" MIN EMBED)	3Х	665					
4	15/32" PLYWOOD SHEATHING, ONE SIDE	10d @ 2" OC	LTP4 AND A35 @ 8" OC	¾"ø LAG OR SIMPSON SDS Ø 4" OC	5/8" @ 16" OC (7" MIN EMBED)	3Х	870					
22	15/32" PLYWOOD SHEATHING, BOTH SIDES	10d @ 4" OC	LTP4 AND A35 @ 8" OC	¾"ø LAG OR SIMPSON SDS © 4" OC	5/8"	3Х	1020					
23	15/32" PLYWOOD SHEATHING, BOTH SIDES	10d @ 3" OC	LTP4 AND A35 @ 8" OC	(2) ⅔"ø LAG OR SIMPSON SDS ❷ 6" OC STAGGERED USE 4× RIM JOIST; TYP	5/8" @ 12" OC (7" MIN EMBED)	3х	1330					
24	15/32" PLYWOOD SHEATHING, BOTH SIDES	10d @ 2" OC	LTP4 AND A35 0 6" OC	(2) ⅔"ø LAG OR SIMPSON SDS ❷ 4" OC STAGGERED USE 4× RIM JOIST; TYP	5/8" @ 10" OC (7" MIN EMBED)	3Х	1740					

SHEARWALL SCHEDULE

NOTES:

- A. PANEL EDGES BACKED WITH 2" NOMINAL OR WIDER FRAMING. INSTALL PANELS EITHER HORIZONTALLY OR VERTICALLY. SPACE FASTENERS MAXIMUM 12" OC ON INTERMEDIATE SUPPORTS.
- B. FRAMING AT ADJOINING PANEL EDGES SHALL BE 3" NOMINAL OR WIDER, AND NAILS SHALL BE STAGGERED WHERE NAILS ARE SPACED 2" OC.
- C. FRAMING AT ADJOINING PANEL EDGES SHALL BE 3" NOMINAL OR WIDER, AND NAILS SHALL BE STAGGERED WHERE BOTH OF THE FOLLOWING CONDITIONS ARE MET: (1) 10d (3"x0.148") NAILS HAVING PENETRATION INTO FRAMING OF MORE THAN 1½" AND (2) NAILS ARE SPACED 3" OC.
- D. WHERE PANELS APPLIED ON BOTH FACES OF A WALL AND NAIL SPACING IS LESS THAN 6" OC ON EITHER SIDE, PANEL JOINTS SHALL BE OFFSET TO FALL ON DIFFERENT FRAMING MEMBERS, OR FRAMING SHALL BE 3" NOMINAL OR THICKER AT ADJOINING PANEL EDGES AND NAILS ON EACH SIDE SHALL BE STAGGERED.
- E. WHERE SHEAR DESIGN VALUES EXCEED 350 POUNDS PER LINEAR FOOT, ALL FRAMING MEMBERS RECEIVING EDGE NAILING FROM ABUTTING PANELS SHALL NOT BE LESS THAN A SINGLE 3" NOMINAL MEMBER, OR TWO 2" NOMINAL MEMBERS FASTENED TOGETHER IN ACCORDANCE WITH SECTION 2306.1 TO TRANSFER THE DESIGN SHEAR VALUE BETWEEN FRAMING MEMBERS. WOOD STRUCTURAL PANEL JOINT AND SILL PLATE NAILING SHALL BE STAGGERED IN ALL CASES. ANCHOR BOLTS FOR SHEAR WALLS SHALL INCLUDE STEEL PLATE AND NUT. THE HOLE IN THE PLATE WASHER IS PERMITTED TO BE DIAGONALLY SLOTTED WITH A WIDTH OF UP TO $\frac{3}{6}$ " Larger than the bolt diameter AND A SLOT LENGTH NOT TO EXCEED 13/4", PROVIDE A STANDARD CUT WASHER IS PLACED BETWEEN THE PLATE WASHER AND THE NUT. SILL PLATES RESISTING A DESIGN LOAD GREATER THAN 350 PLF USING ALLOWABLE STRESS DESIGN SHALL NOT BE LESS THAN A 3" NOMINAL SILL PLATE. (2) 20d BOX END NAILS SHALL BE SUITABLE FOR (2) 16D COMMON END NAILS FOUND IN LINE 8 OF TABLE 2304.9.1 (FASTENING SCHEDULE).
- F. GALVANIZED NAILS SHALL BE HOT DIPPED OR TUMBLED.

MARK	HOLDOWN STUDS	NA
	51005	SĽ
	(2) 2x	1(
B	(2) 2x	1(

<u>C</u> 6X6 PLAN NOTES:

1) ALL POSTS ARE 6x6 U.N.O.

	-		<u></u>		-	
		HOI	LDOWN STUD NAILING	SIMPSON ANCHOR	HOLDOWN	
MARK	HOLDOWN STUDS	NAIL SIZE	NAILING FROM WALL SHEATHING	ANCHOR TYPE	FASTENERS IN CONC.	REMARK
\triangle	(2) 2x	10d	SHEARWALL EDGE NAILING ON BOTH 2x	MST 48	N/A	CENTER TO FLOOR JOIST
2	(2) 2x	10d	SHEARWALL EDGE NAILING ON BOTH 2x	MSTI- <mark>60</mark>	N/A	CENTER TO FLOOR JOIST

HOLDOWN NOTES:

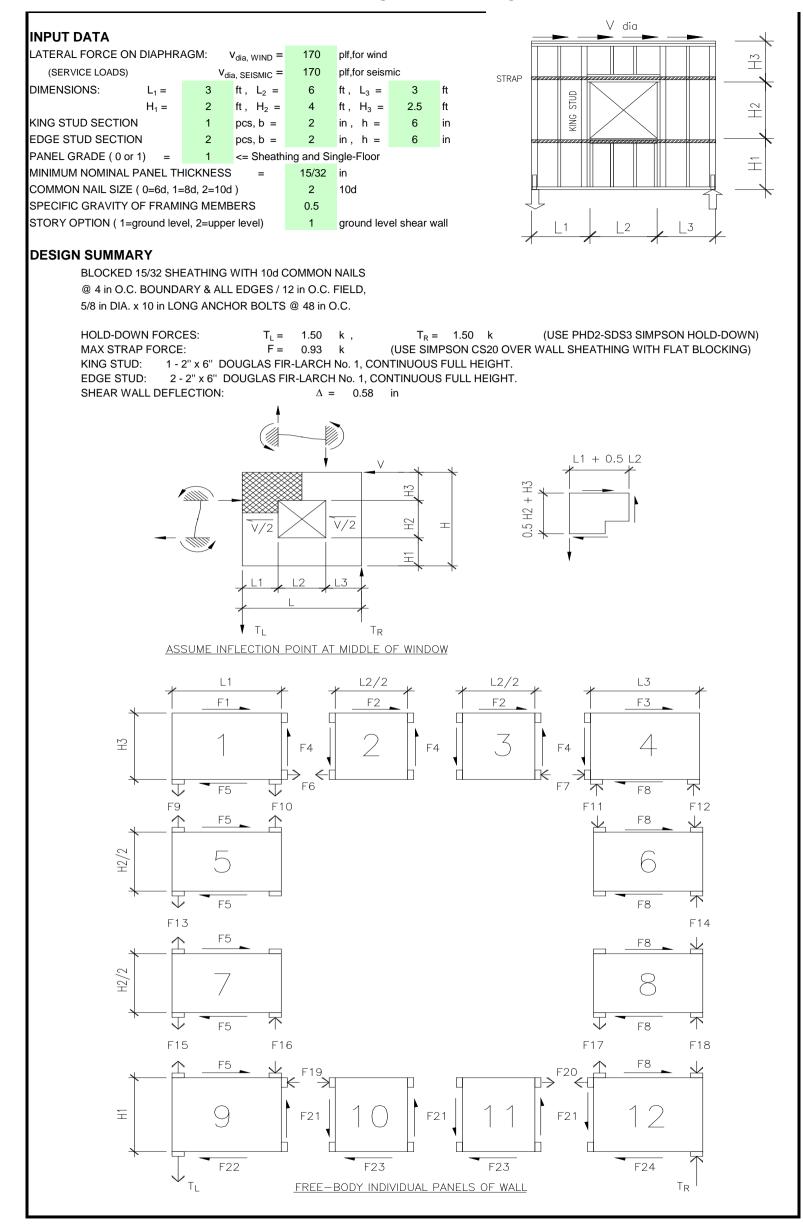
HOLDOWN SCHEDULE:									
HOI	LDOWN STUD NAILING								
NAIL SIZE	NAILING FROM WALL SHEATHING	ANCHOR TYPE & FASTENERS IN CONC.	REMARK						
10d	SHEARWALL EDGE NAILING ON BOTH 2x	HDU2-SDS2.5 w/ Ø5/8" ANCHOR ROD w/ 14" EMBED							
10d	SHEARWALL EDGE NAILING ON BOTH 2x	HDU5-SDS2.5 w/ Ø5/8" ANCHOR ROD w/ 18" EMBED							

HDU8-SDS2.5 W/7/8" ANCHOR ROD W/18" EMBED

2) ALL POST-BEAM CONNECTION: SIMPSON PC/EPC OR AC/ACE POST CAPS OR EQUAL.

3) ALL POST-FOOTING CONNECTION: SIMPSON PB/PBS POST BASE.

4) ALL BEAM-BEAM CONNECTIONS: SIMPSON FACE MOUNTED HANGERS.


5) TYP. STRIP FTG. 24"W x 12"DP w/ (2) #5 CONT. BOT. U.N.O.

6) TYP. CONC. PAD 12"DP w/ #5 @ 12" BOT. E.W.

HOLDOWN SCHEDULE:

WHERE HOLDOWN STRAP IS REQUIRED TO TIE TO THE FLOOR BEAM BELOW, THE HOLDOWN STRAP SHOULD BE CENTERED TO THE FLOOR SHEATHING AND WRAP AROUND BEAM AS REQUIRED.

Shear Wall with Window Opening Reinforcing

$ \begin{array}{c} \text{MALTSD} \\ \hline \text{ECK MAX SHEAR WALL DIMENSION RATIO h \ w = 1.3 \ c 2 \ \text{[Satisfactory]} \\ \hline \text{TERMINE FORCES & SHEAR STRESS OF FREE-BODY NDUMULAU, PARELS OF WALL \\ \hline \text{TERMINE FORCES & SHEAR STRESS OF FREE-BODY NDUMULAU, PARELS OF WALL \\ \hline \text{NOVIDULA PARELS OF FIG. CONC.} F13 \ D2 \ F13 \ F14 \ 765 \ F14 \ 765 \ F14 \ 765 \ F14 \ 765 \ F16 \ 680 \ F2 \ 918 \ F14 \ 765 \ F16 \ 680 \ F2 \ 918 \ F14 \ 765 \ F16 \ 680 \ F2 \ 918 \ F14 \ 765 \ F16 \ 680 \ F2 \ 918 \ F16 \ 1445 \ 73 \ 300 \ 2.00 \ 340 \ F6 \ 918 \ F16 \ 1445 \ 73 \ 300 \ 2.00 \ 340 \ F6 \ 918 \ F16 \ 1445 \ 73 \ 300 \ 2.00 \ 340 \ F6 \ 918 \ F16 \ 1445 \ 73 \ 300 \ 2.00 \ 340 \ F6 \ 918 \ F16 \ 1445 \ 73 \ 300 \ 2.00 \ 340 \ F6 \ 918 \ F16 \ 1445 \ 73 \ 300 \ 2.00 \ 340 \ F6 \ 918 \ F16 \ 1445 \ 73 \ 300 \ 2.00 \ 340 \ F6 \ 918 \ F16 \ 1445 \ 73 \ 300 \ 2.00 \ 340 \ F6 \ 918 \ F16 \ 1445 \ 73 \ 300 \ 2.00 \ 340 \ 55 \ 510 \ 100 \ 52 \ 92 \ 93 \ 93 \ 300 \ 2.00 \ 340 \ F6 \ 918 \ F16 \ 1445 \ 73 \ 300 \ 2.00 \ 340 \ 55 \ 52 \ 93 \ 33 \ 12 \ 300 \ 2.00 \ 340 \ 55 \ 521 \ 93 \ 33 \ 52 \ 93 \ 33 \ 52 \ 93 \ 33 \ 52 \ 93 \ 33 \ 52 \ 93 \ 33 \ 52 \ 93 \ 33 \ 52 \ 93 \ 53 \ 52 \ 52 \ 93 \ 53 \ 52 \ 52 \ 52 \ 52 \ 52 \ 52 \ 5$														cont'd
TERRINE FORCES & SHEAR STRESS OF FREE BODY INDIVIDUAL PANELS OF WALL Individual PANEL Individual	NALYSIS HECK MAX SHEAR	WALL DI	MENSION	RATIO	h/w =	1.3	<	2	[Satisfacto	rvl				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									•					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	INDIVIDUAL PANEL	W (ft)	H (ft)	MAX SHEAF	R STRESS (olf)		NO.	FORCE (lbf)		NO.	FORCE (lbf)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	3.00	2.50					F1	102		F13	765		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	3.00	2.50		306			F2	918		F14	765		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	3.00	2.50		306			F3	102		F15	1445		
6 3.00 2.00 340 F6 918 F18 1445 7 3.00 2.00 340 F7 918 F19 933 8 3.00 2.00 360 F7 918 F20 933 9 3.00 2.00 369 F1 660 F22 87 11 3.00 2.00 369 F11 680 F22 87 12 3.00 2.00 29 F12 65 F24 87 TEERMINE REQUIRED CAPACITY v., = 369 pf1 (1 Side Panel Required, the Max. Nail Spacing 4 n) THE SHER CAPACITIES PER IBC Table 2306.11 (UBCTable 23-11-11: Elecked Nail Spacing Boundary & All Edges Side Nail Spacing 4 n) Side Nail Spacing Max Noil The Idead Share Side Nail Spacing Max Noil Side Nail Spacing Noil Side Nail Spacing Noil	4	3.00	2.50		34			F4	765		F16	680		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	3.00	2.00		340			F5	1020		F17	680		
8 3.00 2.00 340 F8 1020 F20 933 9 3.00 2.00 369 F10 680 F22 87 12 3.00 2.00 369 F11 680 F24 87 TERMINE REQUIRED CAPACITY v_{e} 389 pf. (1 Side Panel Required, the Max. Nal Spacing 4 in) THE SHEAC CAPACITY v_{e} 389 pf. (1 Side Panel Required, the Max. Nal Spacing 4 in) THE SHEAC CAPACITY v_{e} 389 pf. (1 Side Panel Required, the Max. Nal Spacing 4 in) THE SHEAC CAPACITIES PERISC Table 2064.11 / UBCTable 23/E1-11: THE SHEAC CAPACITIES PERISC Table 2064.11 / UBCTable 23/E1-12: The Indicated share numbers have reduced by spocific gravity factor per IBC note 1 of the table. THE HEAC CAPACITES PERISC Table 2064.11 / UBC Table 23/E1-12: Sign in OA: x 10 in LONG ANCHOR BOLT (NDS 2005, Tab.11E) Sign in OA: x 10 in LONG ANCHOR BOLTS (B deside 2063.22) (Table Add to the Colspan add to the Add to the Colspan add to the Add to the Add to the Add to the Add	6	3.00	2.00		340			F6	918		F18	1445		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	3.00	2.00		340			F7	918		F19	933		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	3.00	2.00		340			F8	1020		F20	933		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	3.00	2.00		29			F9	85		F21	738		
123.02.0029F1285F2487ETERMINE REQUIRED CAPACITY v_{p} 3.0pl, (1Side Panel Required, the Max. Nail Spacing4in)TERMINE REQUIRED CAPACITIES PER IBC Table 2306.4.1 / UBCTable 23.41.1 ()TERMINE CAPACITIES PER IBC Table 2306.4.1 / UBCTable 23.41.1 ()Termine ("made in commany memory invision	10	3.00			369				680		F22	87		
ETERMINE REQUIRED CAPACITY $v_s = 369 \text{ pl}$ $(1 \text{ Side Panel Required, the Max. Nail Spacing } 4 \text{ in})$ THE SHEAR CAPACITIES PER IBC Table 2306.4.1 / UBCT beta 230.6.1 / UBC table 2306.4.1 / UBC		3.00												
THE SHEAR CAPACITIES PER IBC Table 2306.4.1 / UBC Table 23-II-1 : Panel Grade Common Penetration Thickness Boundary & All Edges 2	12	3.00	2.00		29			F12	85		F24	87		
Panel GradeCommon Nati (in)Min. (in)Min. (in)Min. (in)Biocked Nail Spacing Boundary & All Edges 	ETERMINE REQUIR	RED CAP	ACITY	$v_{b} =$	369	plf, (1	Side Par	nel Required,	the Max.	Nail Spacir	ng =	4	in)
Panel GradeCommon NailPenetration (in)Boundary & All Edges 3 to 4 6 0 600 770Note: The indicated shear numbers have reduced by specific gravity factor per IBC note a / UBC note 1 of the table.ETERMINE MAX SPACING OF 5/8° DIA ANCHOR BOLT (NDS 2005, Tab.11E)5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in O.C.THE HOLD-DOWN FORCES:The indicated shear numbers have reduced by specific gravity factor per IBC note a / UBC note 1 of the table.THE HOLD-DOWN FORCES:The Induce Max SPACING OF 5/8° DIA ANCHOR BOLT (NDS 2005, Tab.11E)5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in O.C.THE HOLD-DOWN FORCES:The Moldow Wall Seismic indication in the indication of the indi	THE SHEA	R CAPAC	ITIES PER	R IBC Table			23-II-I-1 :				-			
Note:NailInitInitInitInitInitInitInitNote:The indicated shear numbers have reduced by specific gravity factor per IBC note a / UBC note1 of the table.STERMINE MAX SPACING OF 5/8° DIA ANCHOR BOLT (NDS 2005, Tab.11E)Site indicated shear numbers have reduced by specific gravity factor per IBC note a / UBC note1 of the table.STERMINE MAX SPACING OF 5/8° DIA ANCHOR BOLTS @ 48 in O.C.THE HOLD-DOWN FORCES:THE HOLD-DOWN FORCES:Inter the indicated shear numbers (ht-bs)Left 0Question indicatory (lbs)Morents (ht-bs)Left 0Question indicatory (lbs)Morents (ht-bs)Left 0Question indicatory (lbs)Morents (ht-bs)Mathematicatory (lbs)Morents (ht-bs)Left 0Question indicator indicat			_	G										
Sheathing and Single-Floor10d15/815/32310460600770Note: The indicated shear numbers have reduced by specific gravity factor per IBC note a / UBC note 1 of the table.STERMINE MAX SPACING OF 5/8* DIA ANCHOR BOLT (NDS 2005, Tab.11E)5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in 0.C.THE HOLD-DOWN FORCES:The HoldbornValue SeismicOverturningResistingSafetyNet UpliftHoldborn(holdbornValue ScienceValue ScienceValue ScienceValue ScienceValue ScienceValue ScienceValue ScienceValue ScienceScienceValue ScienceValue Science <td< td=""><td>i i</td><td>anel Grad</td><td>e</td><td></td><td></td><td></td><td>6</td><td></td><td>2</td><td>2</td><td>4</td><td></td><td></td><td></td></td<>	i i	anel Grad	e				6		2	2	4			
Note: The indicated shear numbers have reduced by specific gravity factor per IBC note a / UBC note1 of the table.ETERMINE MAX SPACING OF 5/8° DIA ANCHOR BOLT (NDS 2005, Tab.11E)5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in 0.C.THE HOLD-DOWN FORCES:THE HOLD-DOWN FORCES:SEISMIC 170 163 18034CoverturningResistingSafetyNet UpliftHoldbownSEISMIC 170 163 18034Left 00.99TrUND 17017340Left 00.99TrCoverturningResistingSafetyNet UpliftHoldbownSIME SAMICNet UpliftHoldbownSafetyNet UpliftHoldbownSafetyNet UpliftHoldbownSafetyNet UpliftHoldbownSafetyNet UpliftHoldbownSafetyNet UpliftHoldbownColspan="2">Colspan="2">SafetyNet UpliftHoldbownSafetyNet UpliftHoldbownColspan="2">Colspan="2">National ReferenceColspan="2">Colspan="2">National ReferenceColspan="2">Col	Sheathin	a and Sin	ale-Floor		. ,	,					1			
TTERMINE MAX SPACING OF 5/8' DIA ANCHOR BOLT (NDS 2005, Tab. 11E) 5/8 in DIA. x 10 in LONG ANCHOR BOLTS @ 48 in O.C. THE HOLD-DOWN FORCES: $\frac{Vall Steismic}{(plf)} \frac{Vall}{at mid-story(bbs)} \frac{Overturning}{Moments (ft-lbs)} \frac{Resisting}{Resisting} \frac{Safety}{Ractors} \frac{Net Uplift}{(bbs)} \frac{Holddown}{SIMPSON} \frac{Vall}{SEISMIC} \frac{Seismic}{170} \frac{163}{163} \frac{18034}{1004} \frac{Left}{Right} \frac{0}{0.9} \frac{T_{R}}{1} \frac{1503}{2/3} \frac{Vall}{T_{R}} \frac{1503}{1603} \frac{Vall}{Seismic} \frac{Vall}{Seismic} \frac{Vall}{17340} \frac{Vall}{Right} \frac{Vall}{0} \frac{0.9}{2/3} \frac{T_{R}}{T_{R}} \frac{1503}{1445} \frac{Vall}{Vall} \frac{Vall}{Seismic} \frac{Vall}{17340} \frac{Vall}{Right} \frac{Vall}{0} \frac{Vall}{0} \frac{Vall}{2/3} \frac{Vall}{T_{R}} \frac{1503}{1445} \frac{Vall}{Vall} \frac{Vall}{$		-	-			ov specific	gravity fa	ctor per II	BC note a /	UBC note	1 of the ta	ble		
$\frac{(pif)}{SEISMIC} \frac{at mid-story (ibs)}{170} \frac{Moments (ft-ibs)}{163} \frac{Moments (ft-ibs)}{Right} \frac{Moments (ft-ibs)}{0.9} \frac{Factors}{T_{L}} \frac{(ibs)}{1503} \frac{SIMPSON}{163}$ $\frac{Factors}{170} \frac{163}{163} \frac{18034}{Right} \frac{Left}{0} \frac{0.9}{0.9} \frac{T_{R}}{T_{R}} \frac{1503}{1503} \frac{1603}{R}$ $\frac{Kight}{170} \frac{170}{170} \frac{163}{170} \frac{163}{17740} \frac{Left}{Right} \frac{0}{0} \frac{273}{23} \frac{T_{L}}{1} \frac{1445}{176} \frac{1445}{R}$ $\frac{Kight}{170} \frac{170}{170} \frac{17340}{Right} \frac{Left}{0} \frac{0.273}{178} \frac{T_{L}}{1445} \frac{1445}{R}$ $\frac{Kight}{170} \frac{170}{17340} \frac{163}{R} \frac{1600}{R} \frac{273}{178} \frac{170}{R} \frac{1445}{R}$ $\frac{Kight}{170} \frac{170}{170} \frac{17340}{R} \frac{17340}{R} \frac{1774}{R} $	THE HOLL		-	Seismic	Overt	urning		Re	sisting	Safety	Net	Uplift	Holddown	1
$\frac{ SEISMIC }{ WIND } \frac{170}{170} \frac{163}{17340} \frac{ Right }{ Right } \frac{0}{0} \frac{0.9}{2/3} \frac{ T_R }{ T_L } \frac{1503}{1445} \frac{ V_R }{ V_R } \frac{ V_R }{ R_R } \frac{ V_R }{ V_R } \frac{1}{ V$			at mid-s	tory (lbs)		-			-				SIMPSON	
$(T_{L} \& T_{R} values should include upper level UPLIFT forces if application of the transformation of transfo$	SEISMIC	170	1	63	180	034			-				Ś	
$(T_{L} \& T_{R} values should include upper level UPLIFT forces if application of the transformation of transfo$									-				A:SV	
$(T_{L} \& T_{R} values should include upper level UPLIFT forces if application of the transformation of transfo$	WIND	170			17:	340							2th	
$\Delta = + \Delta A = + Shear Nall slip Chord splice slip \frac{8v_bh^3}{EAL_w} \frac{v_bh}{Gt} 0.75h_{e_n} \frac{hd_a}{L_w} = 0.576 \text{ in}$ $Where: v_b = 369 \text{plf} \\ A = 16.50 \text{in}^2 \\ t = 0.298 \text{in} e_n = 0.037 \text{in} d_a = 0.15 \text{in}$ $HECK KING STUD CAPACITY$ $P_{max} = 0.68 \text{kips} \\ F_c = 1500 \text{psi} C_p = 1.60 C_p = 0.48 A = 8.25 \text{in}^2 \\ E = 1700 \text{ksi} C_F = 1.10 F_c = 1255 \text{psi} > f_c = 82 \text{psi}$ $IECK EDGE STUD CAPACITY$ $P_{max} = 1.50 \text{kips}, (this value should include upper level DOWNWARD loads if applicable)$ $F_c = 1500 \text{psi} C_p = 1.60 C_p = 0.48 A = 16.50 \text{in}^2 \\ E = 1700 \text{ksi} C_F = 1.10 F_c = 1255 \text{psi} > f_c = 91 \text{psi}$ $IECK EDGE STUD CAPACITY$ $P_{max} = 1.50 \text{kips}, (this value should include upper level DOWNWARD loads if applicable)$ $F_c = 1500 \text{psi} C_p = 1.60 C_P = 0.48 A = 16.50 \text{in}^2 \\ E = 1700 \text{ksi} C_F = 1.10 F_c = 1255 \text{psi} > f_c = 91 \text{psi}$ $IECK EDGE STUD CAPACITY$ $P_{max} = 1.50 \text{kips}, (this value should include upper level DOWNWARD loads if applicable)$ $F_c = 1500 \text{psi} C_p = 1.60 C_P = 0.48 A = 16.50 \text{in}^2$ $I = 1700 \text{ksi} C_F = 1.10 F_c = 1255 \text{psi} > f_c = 91 \text{psi}$ $ISatisfactoryI$ $Technical References:$			•				0	(T _L a	& T _R values s	should incl				
Where: $v_b = 369$ plf $L_w = 6$ ft $E = 1.7E + 06$ psi A = 16.50 in ² h = 9 ft G = 9.0E + 04 psi t = 0.298 in $e_n = 0.037$ in $d_a = 0.15$ in HECK KING STUD CAPACITY $P_{max} = 0.68$ kips kips $F_c = 1500$ psi $C_p = 1.60$ $C_p = 0.48$ $A = 8.25$ in ² $E = 1700$ ksi $C_F = 1.10$ $F_c = 1255$ psi > $f_c = 82$ psi IECK EDGE STUD CAPACITY $P_{max} = 1.50$ kips, (this value should include upper level DOWNWARD loads if applicable) $F_c = 1500$ psi $C_D = 1.60$ $C_P = 0.48$ $A = 16.50$ in ² IECK EDGE STUD CAPACITY $P_{max} = 1.50$ kips, (this value should include upper level DOWNWARD loads if applicable) $F_c = 1700$ ksi $C_p = 1.60$ $C_P = 0.48$ $A = 16.50$ in ² IECK EDGE STUD CAPACITY $P_{max} = 1.50$ kips, (this value should include upper level DOWNWARD loads if applicable) $F_c = 1700$ ksi $C_p = 1.60$ $C_P = 0.48$ $A = 16.50$ in ² IECK EDGE STUD CAPACITY IECK EDGE STUD CAPACITY $F_c = 1700$ ksi $C_p = 1.60$ $C_P = 0.48$ $A = 16.50$ in ² IECK EDGE STUD CAPACITY	ETERMINE MAXIMU	JM SHEA	R WALL D	EFLECTION	N: (IBC Se	ction 2305.	3.2)							
Where: $v_b = 369$ plf $L_w = 6$ ft $E = 1.7E + 06$ psi A = 16.50 in ² h = 9 ft G = 9.0E + 04 psi t = 0.298 in $e_n = 0.037$ in $d_a = 0.15$ in HECK KING STUD CAPACITY $P_{max} = 0.68$ kips kips $F_c = 1500$ psi $C_p = 1.60$ $C_p = 0.48$ $A = 8.25$ in ² $E = 1700$ ksi $C_F = 1.10$ $F_c = 1255$ psi > $f_c = 82$ psi IECK EDGE STUD CAPACITY $P_{max} = 1.50$ kips, (this value should include upper level DOWNWARD loads if applicable) $F_c = 1500$ psi $C_D = 1.60$ $C_P = 0.48$ $A = 16.50$ in ² IECK EDGE STUD CAPACITY $P_{max} = 1.50$ kips, (this value should include upper level DOWNWARD loads if applicable) $F_c = 1700$ ksi $C_p = 1.60$ $C_P = 0.48$ $A = 16.50$ in ² IECK EDGE STUD CAPACITY $P_{max} = 1.50$ kips, (this value should include upper level DOWNWARD loads if applicable) $F_c = 1700$ ksi $C_p = 1.60$ $C_P = 0.48$ $A = 16.50$ in ² IECK EDGE STUD CAPACITY IECK EDGE STUD CAPACITY $F_c = 1700$ ksi $C_p = 1.60$ $C_P = 0.48$ $A = 16.50$ in ² IECK EDGE STUD CAPACITY		Shear	Nail slir	o Chord	splice slip			0.75h	$e_n \frac{hd_a}{d}$	=	0.576	in		
Where: $v_b = 369$ plf $L_w = 6$ ft $E = 1.7E + 06$ psi A = 16.50 in ² h = 9 ft G = 9.0E + 04 psi t = 0.298 in $e_n = 0.037$ in $d_a = 0.15$ in HECK KING STUD CAPACITY $P_{max} = 0.68$ kips kips $F_c = 1500$ psi $C_p = 1.60$ $C_p = 0.48$ $A = 8.25$ in ² $E = 1700$ ksi $C_F = 1.10$ $F_c = 1255$ psi > $f_c = 82$ psi IECK EDGE STUD CAPACITY $P_{max} = 1.50$ kips, (this value should include upper level DOWNWARD loads if applicable) $F_c = 1500$ psi $C_D = 1.60$ $C_P = 0.48$ $A = 16.50$ in ² IECK EDGE STUD CAPACITY $P_{max} = 1.50$ kips, (this value should include upper level DOWNWARD loads if applicable) $F_c = 1700$ ksi $C_p = 1.60$ $C_P = 0.48$ $A = 16.50$ in ² IECK EDGE STUD CAPACITY $P_{max} = 1.50$ kips, (this value should include upper level DOWNWARD loads if applicable) $F_c = 1700$ ksi $C_p = 1.60$ $C_P = 0.48$ $A = 16.50$ in ² IECK EDGE STUD CAPACITY IECK EDGE STUD CAPACITY $F_c = 1700$ ksi $C_p = 1.60$ $C_P = 0.48$ $A = 16.50$ in ² IECK EDGE STUD CAPACITY	8					EAL_{v}	v Gt		L_w					
$t = 0.298 \text{ in } e_n = 0.037 \text{ in } d_a = 0.15 \text{ in }$ $HECK KING STUD CAPACITY$ $P_{max} = 0.68 \text{ kips}$ $F_c = 1500 \text{ psi } C_D = 1.60 C_P = 0.48 A = 8.25 \text{in}^2$ $E = 1700 \text{ksi } C_F = 1.10 F_c = 1255 \text{psi } f_c = 82 \text{psi } \textbf$	Where:	-						ft		E =				
HECK KING STUD CAPACITY $P_{max} = \begin{array}{cccc} 0.68 & kips \\ F_c = & 1500 & psi & C_p = & 1.60 & C_P = & 0.48 & A = & 8.25 & in^2 \\ E = & 1700 & ksi & C_F = & 1.10 & F_c = & 1255 & psi & > & f_c = & 82 & psi \\ \hline IECK EDGE STUD CAPACITY P_{max} = & 1.50 & kips, (this value should include upper level DOWNWARD loads if applicable) F_c = & 1500 & psi & C_D = & 1.60 & C_P = & 0.48 & A = & 16.50 & in^2 \\ F_c = & 1700 & ksi & C_F = & 1.10 & F_c = & 1255 & psi & > & f_c = & 91 & psi \\ \hline IECK EDGE STUD CAPACITY The contrast of the $														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		t =	0.298	in		e _n =	0.037	in		$d_a =$	0.15	in		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ECK KING STUD	CAPACIT	Y											
$E = 1700 \text{ ksi}$ $C_F = 1.10$ $F_c = 1255 \text{ psi}$ $f_c = 82 \text{ psi}$ $[Satisfactory]$ $ECK EDGE STUD CAPACITY$ $P_{max} = 1.50 \text{ kips, (this value should include upper level DOWNWARD loads if applicable)}$ $F_c = 1500 \text{ psi}$ $C_D = 1.60$ $C_P = 0.48$ $A = 16.50 \text{ in}^2$ $E = 1700 \text{ ksi}$ $C_F = 1.10$ $F_c = 1255 \text{ psi}$ $f_c = 91 \text{ psi}$ $[Satisfactory]$ $Technical References:$	P _{max} =	0.68	kips											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$F_{c} =$	1500	psi	C _D =	1.60		C _P =	0.48		A =	8.25	in ²		
HECK EDGE STUD CAPACITY $P_{max} =$ 1.50kips, (this value should include upper level DOWNWARD loads if applicable) $F_c =$ 1500psi $C_D =$ 1.60 $C_P =$ 0.48A =16.50in ² $E =$ 1700ksi $C_F =$ 1.10 $F_c =$ 1255psi> $f_c =$ 91psi[Satisfactory]Technical References:	E =	1700	ksi						psi	>	$f_c =$	= 82	psi	
$P_{max} =$ 1.50kips, (this value should include upper level DOWNWARD loads if applicable) $F_c =$ 1500psi $C_D =$ 1.60 $C_P =$ 0.48A =16.50in ² $E =$ 1700ksi $C_F =$ 1.10 $F_c =$ 1255psi> $f_c =$ 91psi[Satisfactory]Technical References:										[Satisfact	ory]			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	HECK EDGE STUD	CAPACIT	ΓY											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P _{max} =	1.50	kips, (this	value shoul	d include u	ipper level	DOWNWA	RD loads	if applicable)				
E = 1700 ksi C_F = 1.10 F_c = 1255 psi > f_c = 91 psi [Satisfactory] Technical References:						-					16.50	in ²		
[Satisfactory] Technical References:	-		•						psi				psi	
Technical References:			-	-r -									•	
	Technic	al Referer	nces:											
				fication. ND	S", 2005 E	dition, AF &	& PA, AWC	C, 2005.						

Face-Mount Hangers HU/HUC/HUCQ/HGUS

25%

a

9

Ø

9

a

HGUS3.25/12

Glulam Beam and Double-Shear Joist Hangers

See Hanger Options on pp. 121-123 for hanger modifications, which may result in reduced loads.

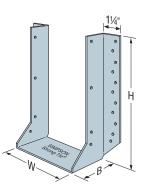
HU/HUC - Most models have triangle and round holes. To achieve maximum loads, fill both round and triangle holes with common nails.

HGUS - Face-mount hanger used for high load applications. All hangers in this series have double-shear nailing. This innovation distributes the load through two points on each joist nail for greater strength. It also allows the use of fewer nails, faster installation, and the use of common nails for all connections.

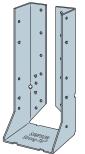
HUCQ - Heavy duty joist hangers that incorporate Simpson Strong-Tie® Strong Drive® SDS Heavy-Duty Connector screws (included).

Material: See tables

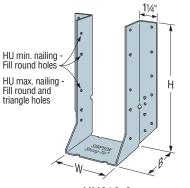
Finish: Galvanized. Some products available in ZMAX® or HDG coating; see Corrosion Information, pp. 15-18.

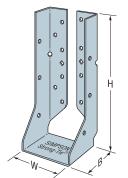

Installation:

- Use all specified fasteners; see General Notes.
- HU/HUC can be installed filling round holes only, or filling round and triangle holes for maximum values.
- HGUS Nails must be driven at an angle through the joist or truss into the header to achieve the table loads.
- HUCQ Install 1/4" x 21/2" Strong-Drive SDS Heavy-Duty Connector screws (provided) in all round holes. Lag screws will not achieve the same load.
- With 3x carrying members, use 16d x 2½" (0.162" dia. x 21/2" long) nails into the header and 16d commons into the joist with no load reduction. With 2x carrying members, use 10d x 11/2" (0.148" dia. x 11/2" long) nails into the header and 10d commons into the joist, and reduce the load to 0.64 of the table value.
- For installations to masonry or concrete, see pp. 279-281.


Options:

- HU hangers available with the header flanges turned in for 25/16" and larger widths, with no load reduction order HUC hanger.
- See Hanger Options on pp. 121–123, for sloped and/or skewed HU models, and HUC (concealed flange) models.
- · Concealed flanges are not available for HGUS.
- HGUS may be skewed only up to a maximum of 45°. See Hanger Options pp. 121–123 or load reductions.
- Other sizes available; contact Simpson Strong-Tie.
- See also HUS series.
- HUCQ hangers cannot be modified.


Codes: See p. 14 for Code Reference Key Chart



HUC210-2 **Concealed Flanges** (HUCQ similar)

HU210-2

HUCQ410

Projection seat on most models for maximum bearing and section economy.

Shear

Nailing

Model configurations may differ from those shown. Some HU models do not have triangle holes. Contact Simpson Strong-Tie for details.

Typical HU Installation

Double-Shear Double-Nailing Side View Do not Top View bend tab

Dome Double-Shear Nailing Side View (Available on some models) U.S. Patent 5,603,580

Face-Mount Hangers HU/HUC/HUCQ/HGUS

Glulam Beam and Double-Shear Joist Hangers (cont.)

These products are available with additional corrosion protection. For more information, see p. 18.

Carried			Dime	nsions	(in.)		Faste	ners			All	owable	Loads			
Member	Model No.	Ga.				Min./			DF/	SP Spe	cies He	ader	SPF/HF	Species	Header	Code
Width (in.)	Woder No.	ua.	W	H	В	Max.	Face	Joist	Uplift (160)	Floor (100)	Snow (115)	Roof (125)	Floor (100)	Snow (115)	Roof (125)	Ref.
	HU210-2 / HUC210-2		31⁄8	8 ¹³ ⁄16	21⁄2	Min.	(14) 16d	(6) 10d	1,135	2,085	2,350	2,530	1,795	2,025	2,180	
	110210-271100210-2		31⁄8	8 ¹³ ⁄16	21⁄2	Max.	(18) 16d	(10) 10d	1,895	2,680	3,020	3,250	2,305	2,605	2,800	19, FL,
	HU212-2 / HUC212-2		31⁄8	10%16	21⁄2	Min.	(16) 16d	(6) 10d	1,135	2,380	2,685	2,890	2,050	2,315	2,490	L17, L12
	110212-271100212-2		31⁄8	10%16	21⁄2	Max.	(22) 16d	(10) 10d	1,895	3,275	3,695	3,970	2,820	3,180	3,425	
	HU3.25/10.5 / HUC3.25/10.5		31⁄4	101⁄4	21⁄2	_	(22) 16d	(10) 10d	1,895	3,275	3,695	3,970	2,820	3,180	3,425	19, L12, FL
	HU3.25/12 / HUC3.25/12	14	31⁄4	11¾	21⁄2	—	(24) 16d	(12) 10d	2,015	3,570	4,030	4,335	3,075	3,470	3,735	13, L12, <mark>1 L</mark>
31/8	HU216-2 / HUC216-2		31⁄8	137⁄8	21⁄2	Min.	(20) 16d	(8) 10d	1,515	2,975	3,360	3,610	2,565	2,895	3,110	19, FL,
Glulam	NU210-2/ NU6210-2		31⁄8	137⁄8	21⁄2	Max.	(26) 16d	(12) 10d	2,015	3,870	4,365	4,695	3,330	3,760	4,045	L17, L12
]	31⁄4	13 ¹³ ⁄16	21⁄2	Min.	(20) 16d	(8) 10d	1,515	2,975	3,360	3,610	2,560	2,890	3,105	I9, L12
	HU3.25/16 / HUC3.25/16		31⁄4	13 ¹³ ⁄16	21⁄2	Max.	(26) 16d	(12) 10d	2,015	3,870	4,365	4,695	3,330	3,755	4,040	
	HUCQ210-2-SDS		31⁄4	9	3	_	(12) ¼" x 2½" SDS	(6) ¼" x 2½" SDS	2,510	4,680	4,955	4,955	3,370	3,570	3,570	
	HGUS3.25/10	12	31⁄4	8%	4	—	(46) 16d	(16) 16d	4,095	9,100	9,100	9,100	7,825	7,825	7,825	19, FL, L12
	HGUS3.25/12	12	31⁄4	10%	4	—	(56) 16d	(20) 16d	5,045	9,600	9,600	9,600	8,255	8,255	8,255	
	HU410		3%16	8%	21⁄2	Max.	(18) 16d	(10) 10d	1,895	2,680	3,020	3,250	2,305	2,605	2,800	17, 19, FL, L1
	HU414		3%16	12%	21⁄2	Max.	(24) 16d	(12) 10d	2,015	3,570	4,030	4,335	3,075	3,470	3,735	17, 19, FL, LI
	HUCQ410-SDS	14	3%16	9	3	_	(12) ¼" x 2½" SDS	(6) ¼" x 2½" SDS	2,510	4,680	4,955	4,955	3,370	3,570	3,570	19, FL, L12
3½ Glulam	HUCQ412-SDS		3%16	11	3	_	(14) ¼" x 2½" SDS	(6) ¼" x 2½" SDS	2,510	5,460	5,560	5,560	3,930	4,005	4,005	19, FL, LIZ
	HHUS410		3%	9	3		(30) 16d	(10) 16d	3,735	5,635	6,380	6,880	4,835	5,480	5,910	17, 19, FL, L12
	HGUS410	12	3%	91⁄16	4	—	(46) 16d	(16) 16d	4,095	9,100	9,100	9,100	7,825	7,825	7,825	
	HGUS414	12	3%	127⁄16	4		(66) 16d	(22) 16d	5,515	10,100	10,100	10,100	8,685	8,685	8,685	
	HU310-2 / HUC310-2		51⁄8	81⁄8	21⁄2	—	(14) 16d	(6) 10d	1,135	2,085	2,350	2,530	1,795	2,025	2,180	19, FL, L17, L
	HU5.125/12 / HUC5.125/12		51⁄4	101⁄4	21⁄2		(22) 16d	(8) 16d	1,795	3,275	3,695	3,970	2,820	3,180	3,425	
	HU5.125/13.5 / HUC5.125/13.5		51⁄4	131⁄4	21⁄2	—	(26) 16d	(12) 16d	2,695	3,870	4,365	4,695	3,330	3,760	4,045]
	HU5.125/16 / HUC5.125/16	14	51⁄4	137⁄8	21⁄2	—	(26) 16d	(12) 16d	2,695	3,870	4,365	4,695	3,330	3,760	4,045	
51⁄8 Glulam	HUCQ5.25/9-SDS		51⁄4	9	3	_	(12) ¼" x 2½" SDS	(6) ¼" x 2½" SDS	2,510	4,680	4,955	4,955	3,370	3,570	3,570	
	HUCQ5.25/11-SDS		51⁄4	11	3	—	(14) ¼" x 2½" SDS	(6) ¼" x 2½" SDS	2,510	5,460	5,560	5,560	3,930	4,000	4,000	
	HGUS5.25/10	12	51⁄4	91⁄16	4	—	(46) 16d	(16) 16d	4,095	9,100	9,100	9,100	7,825	7,825	7,825]
	HGUS5.25/12	12	51⁄4	10%16	4	—	(56) 16d	(20) 16d	5,045	9,600	9,600	9,600	8,255	8,255	8,255	
	HUCQ610-SDS		5½	9	3	_	(12) ¼" x 2½" SDS	(6) ¼" x 2½" SDS	2,520	4,680	5,380	5,715	3,370	3,875	4,115	19, FL, L12
5½	HUCQ612-SDS	14	5½	11	3	_	(14) ¼" x 2½" SDS	(6) ¼" x 2½" SDS		5,315			3,825	3,825	3,825	
Glulam	HHUS5.50/10		5½	9	3	—	(30) 16d	(10) 16d	3,735	5,635	6,380	6,880	4,835	5,480	5,910	
	HGUS5.50/10	12	5½	8 ¹⁵ ⁄16	4	—	(46) 16d	(16) 16d	4,095	9,100	9,100	9,100	7,825	7,825	7,825	
	HGUS5.50/14	12	51⁄2	121⁄2	4	_	(66) 16d	(22) 16d	5,515	10,100	10,100	10,100	8,685	8,685	8,685]
	HGUS6.88/10		67⁄8	8 ¹³ ⁄16	4	_	(46) 16d	(16) 16d	4,095	9,100	9,100	9,100	7,825	7,825	7,825	
6¾ Glulam	HGUS6.88/12	12	67⁄8	1013/16	4	_	(54) 16d	(20) 16d	5,045	9,600	9,600	9,600	8,255	8,255	8,255]
	HGUS6.88/14	1	67⁄8	12 ¹³ /16	4	—	(66) 16d	(22) 16d	5,515	10,100	10,100	10,100		8,685	8,685	
7 Glulam	See HHUS and HGUS in 7" Str	ructu	iral Co	mposit	e Lun	nber s	ection, p. 186 o	r HGU / HHGU			1					
8¾ Glulam	See HGU and HHGU on p. 173.															

SIMPSON

Strong-T

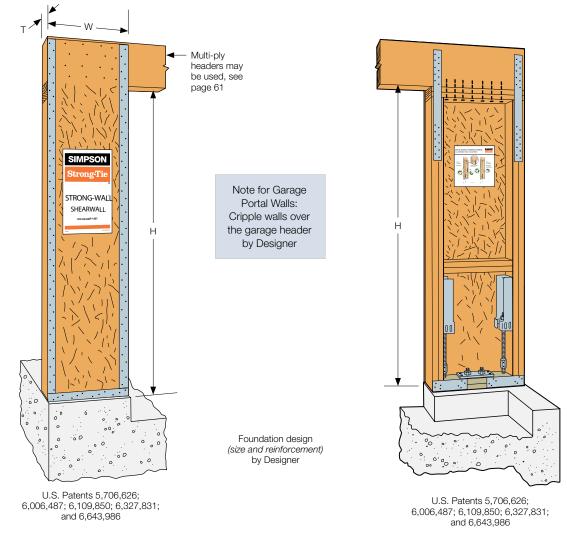
1. Uplift loads based on Douglas Fir and have been increased 60% for wind or earthquake

loading with no further increase allowed. Reduce where other loads govern.

2. Min. nailing quantity and load values - fill all round holes;

Max. nailing quantity and load values - fill all round and triangle holes.

3. For SPF/HF uplift, use 0.86 x DF/SP uplift load for products requiring nails and 0.72 for products requiring screws.


4. Nails: 16d = 0.162" dia. x $3\frac{1}{2}$ " long, 10d = 0.148" dia. x 3" long. See pp. 26–27 for other nail sizes and information.

Garage Portal Systems on Concrete Foundations

SIMPSON Strong-Tie

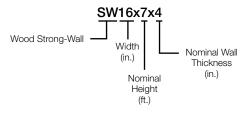
Garage Portal systems provide increased lateral resistance over site-built shearwalls in locations where space is at a premium. Portal walls shall be installed with a minimum 12" nominal deep header for adequate shear nailing. Because the portal walls and header are tested as a system, the resulting portal frame offers superior engineered performance over site-built walls.

Codes: ICC-ES ESR-1267; City of L.A. RR 25427

Garage Portal Wall Product Data

C-L-SW14@ 2014 SIMPSON STRONG-TIE COMPANY INC.

Model	w	Н	т	Number of Fasteners	Mue Anct		Holdown Anchor Bolts		
No.	(in.)	(in.)	(in.)	in Top of Wall	Qty.	Dia. (in.)	Qty.	Model ^{2,3}	
SW16x7x4	16	78	4	8-SDS 1⁄4"x6"	2	5⁄8	2	PAB7	
SW16x7x6	16	78	5¾	8-SDS 1⁄4"x6"	2	5⁄8	2	PAB7	
SW16x8x4	16	90	4	8-SDS 1/4"x6"	2	5⁄8	2	PAB7	
SW16x8x6	16	90	5¾	8-SDS 1⁄4"x6"	2	5⁄8	2	PAB7	
SW22x7x4	22	78	4	10-SDS 1⁄4"x6"	2	5⁄8	2	PAB7	
SW22x7x6	22	78	5¾	10-SDS 1⁄4"x6"	2	5⁄8	2	PAB7	
SW22x8x4	22	90	4	10-SDS 1⁄4"x6"	2	5⁄8	2	PAB7	
SW22x8x6	22	90	5¾	10-SDS 1⁄4"x6"	2	5⁄8	2	PAB7	


1. Recommended minimum %"x12" mudsill anchor.

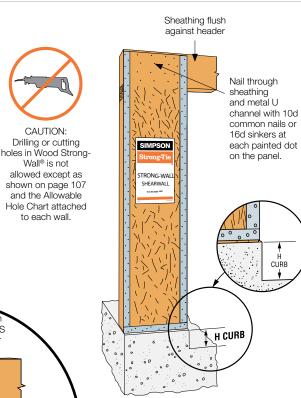
2. PAB7 available in multiple lengths. See pages 66-68 for anchor bolt information and anchorage solutions.

3. SSTB28 anchor bolts may be specified when the anchor tension force does not exceed allowable anchor

tension. See page 67 for SSTB anchor bolt information and anchorage solutions.

Naming Legend

Garage Portal Systems on Concrete Foundations

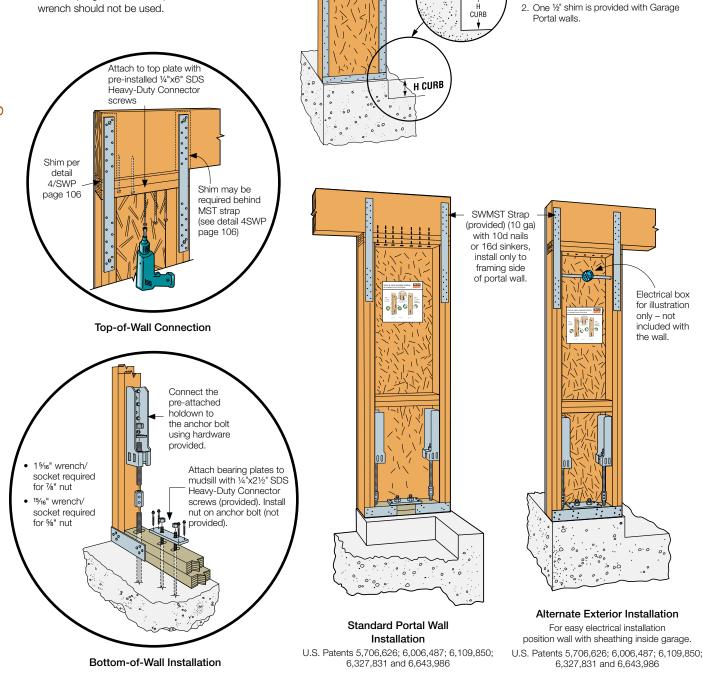

CAUTION:

Wall® is not

to each wall.

Installation:

- Typical shim thickness between the Strong-Wall® and top plates or header is 7/8" or less using Simpson Strong-Tie® Strong-Drive® 1/4"x6" SDS Heavy-Duty Connector screws. For additional shim thickness, contact Simpson Strong-Tie.
- For holdowns, per ASTM standards, anchor bolt nuts should be finger-tight plus 1/3 to 1/2 turn with a hand wrench, with consideration given to possible future wood shrinkage. Care should be taken to avoid over-torquing the nut, an impact wrench should not be used.


Garage Header Rough Opening Height

SIMPSON

Strong-Tie

- 5		0 -	0
Model No.	H Curb	Without ^{1/2"} Shim	With ½" Shim
SW16x7x4 SW22x7x4	6"	7'	7'-1⁄2"
SW16x7x6 SW22x7x6	7"	7'-1"	7'-1½"
SW16x8x4 SW22x8x4	6"	8'	8'-1⁄2"
SW16x8x6 SW22x8x6	7"	8'-1"	8'-1½"

1. The height of the garage curb above the garage slab is critical for rough header opening on portal walls.

Garage Portal Systems on Concrete Foundations

	D	ouble-Wall (Garage Porta	1 1	Single-Wall Garage Portal ²					
	Seis	smic	Wi	nd	Seis	smic	Wi	nd		
Model No.	Allowable ASD Shear Load V (lbs.)	Drift at Allowable Shear (in.)								
SW16x7x4	2670	0.36	3500	0.53	1335	0.36	1750	0.53		
SW16x7x6	2670	0.36	3500	0.53	1335	0.36	1750	0.53		
SW16x8x4	2350	0.40	3105	0.60	1175	0.40	1555	0.60		
SW16x8x6	2350	0.40	3105	0.60	1175	0.40	1555	0.60		
SW22x7x4	4160	0.37	5420	0.53	2080	0.37	2710	0.53		
SW22x7x6	4160	0.37	5420	0.53	2080	0.37	2710	0.53		
SW22x8x4	W22x8x4 3730 0.42		4880	0.60	1865	0.42	2440	0.60		
SW22x8x6	3730	0.42	4880	0.60	1865	0.42	2440	0.60		

1. A double-wall garage portal system consists of 2 walls with a header spanning over the top and connected as shown.

2. A single-wall garage portal system consists of 1 wall with a header spanning over the top and connected as shown.

3. Recommended header moisture content is 19% or less at time of installation.

4. The minimum header sizes listed are the minimum required for lateral rigidity of the portal system. Larger headers may be required due to vertical loading.

- 5. Portal walls may be installed with sheathing facing inside or outside.
- 6. Typical shim thickness between the Strong-Wall® shearwall and header is %" or less using
- Simpson Strong-Tie® Strong-Drive® 1/4"x6" SDS Heavy-Duty Connector screws.
- 7. See allowable vertical load table on page 65 for Wood Strong-Wall shearwall maximum compression and tension capacities.
- 8. Allowable shear capacities must be reduced as limited by anchor bolt capacities for installations on CMU.
- 9. Anchor tension forces may be calculated using the following formula:

Anchor Tension = $\frac{\text{Shear per Panel x Height}}{\text{Width - 5.25"}}$

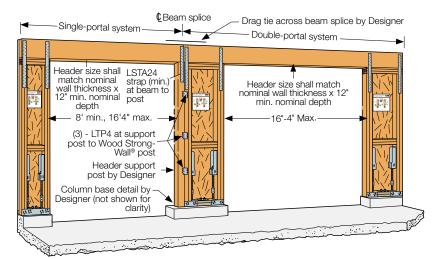
K = 0.80 (SW16 Portal); 0.67 (SW22 Portal)

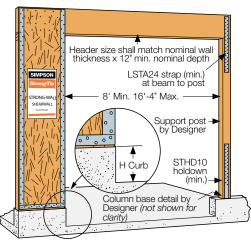
See page 66 for PAB anchorage solutions.

Detail 1 – Single- and Double-Wall Garage Portal

- Beam to support post and support post to foundation uplift connectors may be reduced where justified by calculations.
- This detail reflects lateral load requirements of a Single- and Double-Wall Portal system. It is the Designer's responsibility to provide a complete load path for all loads in accordance with the governing codes.
- 3. System rating equals the sum of the Singleand Double-Wall Portal values.
- Alternate Installation: A single-piece header (no camber) may be substituted for the two headers shown. The design rating for this condition may then be evaluated as the sum of the individual single-wall ratings.
- Longer header spans can be accommodated if larger headers are used such that equivalent stiffness is equal to or greater than that provided by the minimum header and maximum length indicated.
- Simpson Strong-Tie[®] LTP4 and LSTA24 (by Designer) are minimum requirements to achieve the allowable loads.

Detail 2 - Single-Wall Garage Portal


- Beam to support post and support post to foundation uplift connectors may be reduced where justified by calculations.
- This detail reflects lateral load requirements of a Single-Wall Portal system. It is the Designer's responsibility to provide a complete load path for all loads in accordance with the governing codes.
- Longer header spans can be accommodated if larger headers are used such that equivalent stiffness is equal to or greater than that provided by the minimum header and maximum length indicated.
- Simpson Strong-Tie[®] STHD10 and LSTA24 (by Designer) are minimum requirements to achieve the allowable loads.



Model No.	Allowa	able Load pe	er Portal Wa	ll (lbs.)		
	Seis	smic	Wind			
	Double 2x Header	Double LVL Header	Double 2x Header	Double LVL Header		
SW16x7x4	1145	1200	1500	1575		
SW16x8x4	940	1100	1245	1455		
SW22x7x4	1500	1660	1950	2165		
SW22x8x4	1400	1585	1830	2075		

1. Garage portal walls listed above may be used with double 2x12 minimum or double 1%"x117%" minimum LVL headers.

- Headers shall be face nailed to each other with minimum 16d nails at 32" on center staggered along the top and bottom.
- 3. Double 2x12 require ½" ply or OSB shim to make the header assembly flush with Wood Strong-Wall[®]. The shim shall match the header depth and Wood Strong-Wall width minimum. It may be placed on either face of header or between plies directly over the Wood Strong-Wall.

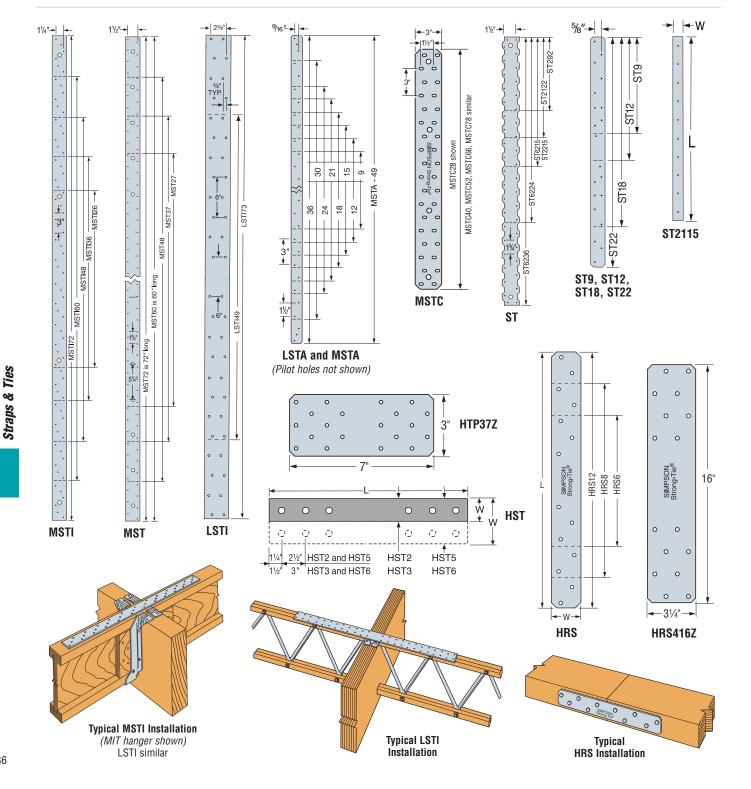
SIMPSON

HRS/ST/PS/HST/HTP/LSTA/LSTI/MST/MSTA/MSTC/MSTI Strap Ties

SIMPSON Strong-Tie

Straps are designed to transfer tension loads in a wide variety of applications.

HRS—A 12 gauge strap with a nailing pattern designed for installation on the edge of 2x members. The HRS416Z installs with Simpson Strong-Tie[®] Strong-Drive[®] SDS Heavy-Duty Connector screws.


LSTA and MSTA—Designed for use on the edge of 2x members, with a nailing pattern that reduces the potential for splitting.

LSTI—Light straps that are suitable where pneumatic-nailing is necessary through diaphragm decking and wood chord open web trusses.

MST—Splitting may be a problem with installations on lumber smaller than $3\frac{1}{2}$ "; either fill every nail hole with $10dx1\frac{1}{2}$ " nails or fill every-other hole with 16d common nails. Reduce the allowable load based upon the size and quantity of fasteners used.

MSTC—High Capacity strap which utilizes a staggered nail pattern to help minimize wood splitting. Nail slots have been countersunk to provide a lower nail head profile.

- FINISH: PS-HDG; HST3 and HST6-Simpson Strong-Tie[®] gray paint; all others-galvanized. Some products are available in stainless steel or ZMAX[®] coating; see Corrosion Information, pages 13-15.
- INSTALLATION: Use all specified fasteners. See General Notes. OPTIONS: Special sizes can be made to order. Contact Simpson Strong-Tie.
- **CODES:** See page 12 for Code Reference Key Chart. MSTC and RPS meet code requirements for reinforcing cut members (16 gauge) at top plate and RPS at sill plate. International Residential Code®– 2000/2006 R602.6.1 International Building Code®– 2000/2006 2308.9.8 (For RPS, refer to page 223.)

HRS/ST/PS/HST/HTP/LSTA/LSTI/MST/MSTA/MSTC/MSTI Strap Ties

CODES: See page 12 for Code Reference Key Chart.

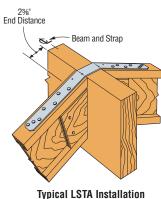
These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.

These products are approved for installation with the Strong-Drive® SD Connector screw. See page 27 for more information.

Model No.	Ga	Dime	ensions	Fasteners (Total)	Allowable Tension Loads (DF/SP)	Allowable Tension Loads (SPF/HF)	Code Ref.
		W	L	, ,	(160)	(160)	
LSTA9		11/4	9	8-10d	740	635	
LSTA12	1	11/4	12	10-10d	925	795	
LSTA15	1	11/4	15	12-10d	1110	950	
LSTA18	1	11/4	18	14-10d	1235	1110	
LSTA21		11/4	21	16-10d	1235	1235	
LSTA24	20	11/4	24	18-10d	1235	1235	
ST292	1	21/16	9 5⁄16	12-16d	1265	1120	
ST2122	1	21/16	12 ¹³ ⁄16	16-16d	1530	1505	
ST2115	1	3⁄4	165/16	10-16d	660	660	
ST2215	1	2 ¹ / ₁₆	165/16	20-16d	1875	1875	
LSTA30		11/4	30	22-10d	1640	1640	
LSTA36	1	11/4	36	24-10d	1640	1640	I4, L3, <mark>L5,</mark> F2
LSTI49	1	3 ³ ⁄4 3 ³ ⁄4	49	32-10dx1½	2975	2555	
LSTI73	1		73	48-10dx1½	4205	3830	
MSTA9	1	11/4	9	8-10d	750	645	
MSTA12	18	11/4	12	10-10d	940	810	
MSTA15	1	11/4	15	12-10d	1130	970	
MSTA18	1	11/4	18	14-10d	1315	1130	
MSTA21	1	11/4	21	16-10d	1505	1290	
MSTA24	1	11/4	24	18-10d	1640	1455	
MSTA30		11/4	30	22-10d	2050	1820	
MSTA36	1	11/4	36	26-10d	2050	2050	
MSTA49	1	11/4	49	26-10d	2020	2020	F2, L3, <mark>L5</mark>
ST6215	1	21/16	165/16	20-16d	2095	1900	14, IL14, L3, L5, F2
ST6224	1	2 ¹ / ₁₆	235/16	28-16d	2540	2540	14, L3, L5, F2
ST9	1	11/4	9	8-16d	885	760	
ST12	16	11/4	11%	10-16d	1105	950	
ST18	1	11/4	17¾	14-16d	1420	1330	
ST22	1	11/4	21%	18-16d	1420	1420	14, L3, <mark>L5</mark> , F2
MSTC28	1	3	281/4	36-16d sinkers	3455	2980	
MSTC40	1	3	401/4	52-16d sinkers	4745	4305	
MSTC52	1	3	521/4	62-16d sinkers	4745	4745	
HTP37Z	1	3	7	20-10dx1½	1850	1600	L5
MSTC66		3	65¾	76-16d sinkers	5860	5860	
MSTC78	14	3	77¾	76-16d sinkers	5860	5860	14, L3, <mark>L5,</mark> F2
ST6236	1	2 ¹ / ₁₆	33 ¹³ ⁄16	40-16d	3845	3845	
HRS6	1	1%	6	6-10d	605	525	
HRS8	1	1%	8	10-10d	1010	880	L5, F26
HRS12	1	1%	12	14-10d	1415	1230	
MSTI26	1	2 ¹ / ₁₆	26	26-10dx1½	2745	2325	
MSTI36	12	2 ¹ / ₁₆	36	36-10dx1½	3800	3220	
MSTI48	1	21/16	48	48-10dx1½	5065	4290	I4, L3, <mark>L5,</mark> F2
MSTI60	1	21/16	60	60-10dx1½	5080	5080	
MSTI72	1	21/16	72	72-10dx1½	5080	5080	
HRS416Z	1	31⁄4	16	16-SDS 1/4"x11/2"	2835	2305	170

1. Loads include a 60% load duration increase on the fasteners for wind or earthquake loading.

2 10dx11/2" nails may be substituted where 16d sinkers or 10d are specified at 100% of the table loads except where straps are installed over sheathing.

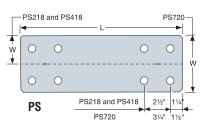

3. 10d commons may be substituted where 16d sinkers are specified at 100% of table loads.

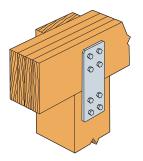
4. 16d sinkers (0.148" dia. x 31/4" long) or 10d commons may be substituted where 16d commons are specified at 0.84 of the table loads.

5. Use half of the nails in each member being connected to achieve the listed loads.

6. Tension loads apply for uplift when installed vertically.

7. **NAILS**: $16d = 0.162^{\circ}$ dia. x 3° long, 16d Sinker = 0.148^{\circ} dia. x 3^{\prime} long, $10d = 0.148^{\circ}$ dia. x 3° long. $10dx1^{\prime}_{\prime} = 0.148^{\circ}$ dia. x 1^{\prime}_{\prime} long. See pages 22-23 for other nail sizes and information.




(Hanger not shown) Bend strap one time only, max 12/12 joist pitch.

Model No.	Material Thickness	Dii	m.	Bo	lts	Code Ref.	
NU.	Gauge	W	L	Qty	Dia	Rei.	
PS218		2	18	4	3⁄4		
PS418	7 ga	4	18	4	3⁄4	180	
PS720		6¾	20	8	1/2		

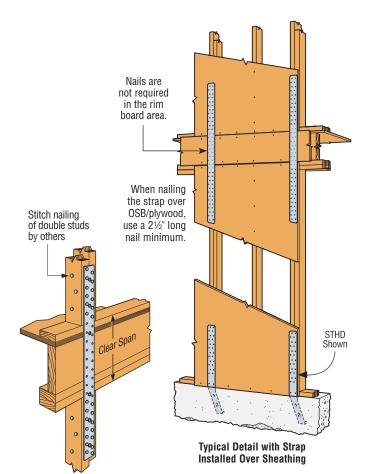
1. PS strap design loads must be determined by the Designer for each installation. Bolts are installed both perpendicular and parallelto-grain. Hole diameter in the part may be oversized to accommodate the HDG. Designer must determine if the oversize creates an unacceptable installation.

2. For allowable tension loads, see page 230.

Typical PS720 Installation

C-C-2015 © 2015 SIMPSON STRONG-TIE COMPANY INC. PRINTED 12/14

HST/MST/MSTC/MSTA Strap Ties



CODES: See page 12 for Code Reference Key Chart.

These products are approved for installation with the Strong-Drive® SD Connector screw. See page 27 for more information.

Floor-to-Floor Clear Span Table

Model No.	Clear Span	Fasteners (Total)	Allowable Tension Loads (DF/SP)	Allowable Tension Loads (SPF/HF)
NU.	opan	(Total)	(160)	(160)
MSTA49	18	26-10d	2020	2020
10101743	16	26-10d	2020	2020
MSTC28	18	12-16d sinkers	1155	995
10101020	16	16-16d sinkers	1540	1325
	24	20-16d sinkers	2310	1985
MSTC40	18	28-16d sinkers	2695	2320
	16	32-16d sinkers	3080	2650
	24	36-16d sinkers	3465	2980
MSTC52	18	44-16d sinkers	4235	3645
	16	48-16d sinkers	4620	3975
	30	48-16d sinkers	4780	4120
MSTC66	24	54-16d sinkers	5380	4640
10131000	18	64-16d sinkers	5860	5495
	16	68-16d sinkers	5860	5840
	30	64-16d sinkers	5860	5495
MSTC78	24	72-16d sinkers	5860	5860
	18	76-16d sinkers	5860	5860
	24	14-16d	1725	1495
MST37	18	20-16d	2465	2135
	16	22-16d	2710	2345
	24	26-16d	3215	2780
MST48	18	32-16d	3960	3425
	16	34-16d	4205	3640
	30	34-16d	4605	3995
MST60	24	40-16d	5240	4700
	18	46-16d	6235	5405
	30	48-16d	6505	5640
MST72	24	54-16d	6730	6345
	18	62-16d	6730	6475

Floor-to-Floor Tie Installation showing a Clear Span

These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.

Model		Dimensions		Fasteners (Total)			Allowable Tension Loads (DF/SP)		Allowable Te (SPF	Code						
No.	Ga	w		w					Noile	Bo	lts	Nails	Bolts	Nails	Bolts	Ref.
			L	Nails	Qty	Dia	(160)	(160)	(160)	(160)						
MST27		2 ¹ ⁄ ₁₆	27	30-16d	4	1/2	3700	2165	3200	2000						
MST37	12	21/16	37½	42-16d	6	1/2	5080	3025	4480	2805						
MST48		21/16	48	50-16d	8	1/2	5310	3675	5190	3410						
MST60	10	2 ¹ ⁄ ₁₆	60	68-16d	10	1/2	6730	4485	6475	4175						
MST72		2 ¹ ⁄ ₁₆	72	68-16d	10	1/2	6730	4485	6475	4175	14, L3. F2					
HST2	7	21/2	211/4	_	6	5/8	—	5220	—	4835	10,12					
HST5] /	5	211/4	_	12	5/8	—	10650	—	9870						
HST3	3	3	25½	_	6	3⁄4	—	7680	—	6660						
HST6	3	6	25½	—	12	3⁄4	—	15470	—	13320						

1. Loads include a 60% load duration increase on the fasteners for wind or earthquake loading.

2. Install bolts or nails as specified by Designer. Bolt and nail values may not be combined.

Allowable bolt loads as becaule by besigner. Bolt and hading and these minimum member thicknesses: MST-2½"; HST2 and HST5-4"; HST3 and HST6-4½".
 Use half of the required nails in each member being connected to achieve the listed loads.

When installing strap over wood structural panel sheathing, use 2½" long nail minimum.
 Tension loads apply for uplift as well when installed vertically.

7. **NAILS:** 16d = 0.162° dia. x $3\frac{1}{2}^{\circ}$ long, 16d Sinker = 0.148° dia. x $3\frac{1}{4}^{\circ}$ long, $10dx1\frac{1}{2} = 0.148^{\circ}$ dia. x $1\frac{1}{2}^{\circ}$ long. See pages 22-23 for other nail sizes and information.

HDU/DTT Holdowns

Holdowns & Tension Ties

This product is preferable to similar connectors because of a) easier installation, b) higher loads, c) lower installed cost, or a combination of these features.

HDU holdowns are pre-deflected during the manufacturing process, virtually eliminating deflection under load due to material stretch. They use Simpson Strong-Tie® Strong-Drive® SDS Heavy-Duty Connector screws which install easily, reduce fastener slip and provide a greater net section when compared to bolts.

The HDU series of holdowns are designed to replace previous versions of the product such as PHDs as well as bolted holdowns. The HDU2, 4 and 5 are direct replacements for the PHD2, 5 and 6, respectively.

The DTT tension ties are designed for lighter-duty holdown applications on single or 2x posts. The new DTT1Z is installed with nails or Simpson Strong-Tie Strong-Drive SD Connector screws and the DTT2Z installs easily with the Strong-Drive SDS Heavy-Duty Connector screws *(included)*. The DTT1Z holdowns have been tested for use in designed shearwalls and prescriptive braced wall panels as well as prescriptive wood-deck applications *(see page 209 for deck applications)*.

For more information on holdown options, contact Simpson Strong-Tie. HDU SPECIAL FEATURES:

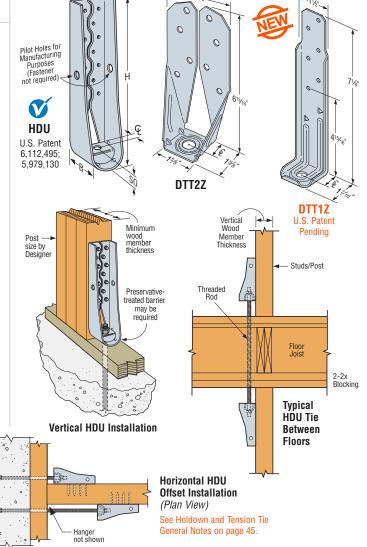
- Holdown designs virtually eliminate deflection due to material stretch.
- Uses Strong-Drive SDS Heavy-Duty Connector screws which install easily, reduce fastener slip, and provide a greater net section area of the post compared to bolts.
- Strong-Drive SDS Heavy-Duty Connector screws are supplied with the holdowns to ensure proper fasteners are used.
- No stud bolts to countersink at openings.

MATERIAL: See table

- FINISH: HDU Galvanized; DTT1Z and DTT2Z ZMAX[®] coating; DTT2SS – stainless steel
- INSTALLATION: See General Notes on page 45.
 - The HDU requires no additional washer, the DTT requires a standard cut washer (included with DTT2Z) be installed between the nut and the seat.
 - Strong-Drive SDS Heavy-Duty Connector screws install best with a low speed high torque drill with a %" hex head driver.

CODES: See page 12 for Code Reference Key Chart.

	Model			Di	mensio (in.)	ns		F	asteners	Minimum Wood	Allowable Tension Loads (160) ¹			Code
	No.	Ga	W	H	В	ଜ	S0	Anchor Bolt Dia. (in.)	Post Fasteners	Member Thickness ⁴ (in.)	DF/SP	SPF/HF	Deflection at Allowable Load (in.)	Ref.
ø		14							6-SD #9x1½		840	840	0.170	
S	DTT1Z		1½	71⁄8	17⁄16	3⁄4	³∕16	3⁄8	6-10dx1½	1½	910	640	0.167	160
									8-10dx1½		910	850	0.167	
	DTT2Z	14 3	3¼ 6						8-SDS 1/4"x11/2"	1½	1825	1800	0.105	
				6 ¹⁵ / ₁₆	15⁄8	¹³ ⁄16	3⁄16	1/2	8-SDS 1/4"x11/2"	3	2145	1835	0.128	
	DTT2Z-SDS2.5								8-SDS 1/4"x21/2"	3	2145	2105	0.128	
	HDU2-SDS2.5	14	3	811/16	3¼	1 5⁄16	1%	5⁄8	6-SDS 1/4"x21/2"	3	3075	2215	0.088	
	HDU4-SDS2.5	14	3	10 ¹⁵ / ₁₆	3¼	1 5⁄16	1%	5/8	10-SDS 1/4"x21/2"	3	4565	3285	0.114	
	HDU5-SDS2.5	14	3	13 ³ ⁄16	3¼	1 5⁄16	1%	5/8	14-SDS 1/4"x21/2"	3	5645	4065	0.115	l6, L8, F5
						13%	1½	7/8		3	6765	4870	0.084	10,15
	HDU8-SDS2.5	10	3	16%	31⁄2				20-SDS 1/4"x21/2"	31⁄2	6970	5020	0.116	1
										41/2	7870	5665	0.113	
		10	3	001/	01/	13/8	41/	1	20 000 1/"	51/2	9535	6865	0.137	
	HDU11-SDS2.5	10	3	221⁄4	3½	17/8	1½	I	30-SDS 1/4"x21/2"	71⁄4	11175	8045	0.137	
										4x6 ^{3,4}	10770	7755	0.122	170
	HDU14-SDS2.5	7	3 2	25 ¹ / ₁₆	3½	1%16	1%16	1	36-SDS 1/4"x21/2"	71⁄43	14390	10435	0.177	16, L8,
										51/22,3	14445	10350	0.177	F5


These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.

2. Noted HDU14 allowable loads are based on a 51/2" wide post (6x6 min.).

3. HDU14 requires heavy hex anchor nut to achieve tabulated loads *(supplied with holdown)*.

4. Loads are applicable to installation on either narrow or wide face of post.

-W

SB Anchor Bolt

This product is preferable to similar connectors because of a) easier installation, b) higher loads, c) lower installed cost, or a combination of these features.

The SB%x24 anchor bolt offers a load-tested anchorage solution that exceeds the capacity of all of our holdowns that call for a 5/8" dia. anchor. Similarly, the SB1x30 covers holdowns utilizing a 1" diameter anchor that exceed the capacity of our SSTB bolts. The SB7/x24 is designed to

maximize performance with minimum embedment for holdowns utilizing a 7/8" dia. anchor. SB anchor bolts are code listed by ICC-ES under the 2009 and 2012 IBC and IRC to meet the

requirements of ICC-ES acceptance criteria - AC 399. ICC-ES ESR-2611 is the industry's first code report issued for proprietary anchor bolts evaluated to the criteria of AC 399.

Special Features:

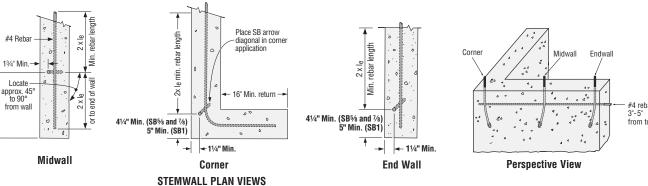
- · Indentification on the bolt head showing embedment angle and model
- Sweep geometry to optimize position in form
- Rolled thread for higher tensile capacity
- Hex nuts and plate washer fixed in position
- · Available in HDG for additional corrosion resistance

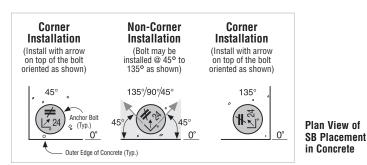
MATERIAL: ASTM F-1554, Grade 36

FINISH: None. May be ordered HDG. Contact Simpson Strong-Tie. INSTALLATION:

- · SB is only for concrete applications poured monolithically except where noted.
- Top nuts and washers for holdown attachment are not supplied with the SB; install standard nuts, couplers and/or washers as required.
- On HDG SB anchors, chase the threads to use standard nuts or couplers or use overtapped products in accordance with ASTM A563, for example Simpson Strong-Tie® NUT5/8-OST, NUT7/8-OST and NUT1-OST, CNW%-OST, CNW%-OST and CNW1-OST
- Install SB before the concrete pour using AnchorMates®. Install the SB per the plan view detail.
- Minimum concrete compressive strength is 2500 psi.
- . When rebar is required it does not need to be tied to the SB.

CODES: See page 12 for Code Reference Key Chart.


These products are available with additional corrosion protection. Additional products on this page may also be available with this option, check with Simpson Strong-Tie for details.


SB Bolts at Stemwall

	Di	imensi	ons (in.)		Allowable Tension Loads							
Model No.	Stemwall	Dia.	Length	Min. Embed.	Wind & SDC A&B				Code Ref.			
-	Width			(le)	Midwall	Corner	End Wall	Midwall	Corner	End Wall		
SB⁵%x24	6	5⁄8	24	18	6675	6675	6675	6675	5730	5730	123,	
SB%x24	8	7⁄8	24	18	10470	9355	6820	8795	7855	5730	F30,	
SB1x30	8	1	30	24	13665	9905	7220	11470	8315	6065	L20	

1. See page 34 for notes to the Designer.

1.5 le Min.

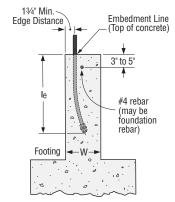
Embedment Line (Top of

Concrete)

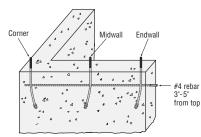
6"

(standard on

all models)


Length

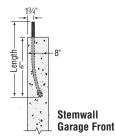
le

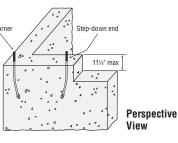

SIMPSON

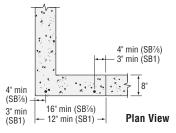
Strong-I

💙 SB1x30 (Other models similar)

Typical SB Installation

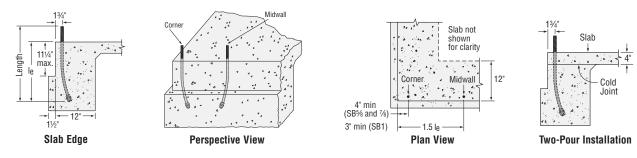


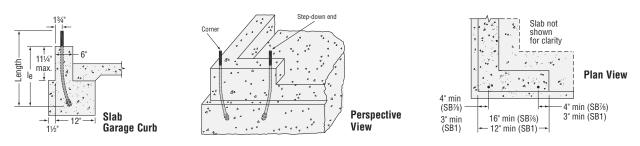

SB Anchor Bolt



SB Bolts at Stemwall: Garage Front

		Dimensi	ons (in.)						
Model No.	Stemwall	Dia.	Length	Min. Embed. (le)	Wind & S	SDC A&B	SDC	Code Ref.	
	Width				Step-Down End	Corner	Step-Down End	Corner	
SB7/sx24	8	7⁄8	24	18	7225	7660	6070	6435	123
SB1x30	8	1	30	24	11305	9635	9495	8030	123




SB Bolts at Slab on Grade: Edge

	Model No.		Dimensi	ons (in.)						
		Footing	Dia.	1	Min. Embed.	Wind & S	SDC A&B	SDC	Code Ref.	
		Width Dia.	Dia.	Length	(le)	Midwall	Corner	Midwall	Corner	
	SB%x24	12	5⁄8	24	18	6675	6675	6675	5730	
	SB%x24	12	7⁄8	24	18	13080	12135	12320	10190	123
	SB1x30	12	1	30	24	17080	15580	16300	13090	

SB Bolts at Slab on Grade: Garage Curb

	Model No.		Dimensi	ons (in.)				Code Ref.		
		Curb		Longth	Min. Embed.	Wind & S	SDC A&B		SDC	
		Width Dia.	Dia.	Length	(le)	Step-down End	Corner	Step-down End	Corner	
	SB7/8x24	6	7⁄8	24	18	9175	11075	7705	9305	123
	SB1x30	6	1	30	24	15580	15580	13090	13090	123

Notes to the Designer:

34

1. Rebar is required at top of stemwall foundations but is not required for Slab-on-Grade Edge and Garage Curb, or Stemwall Garage Front installations.

2. Minimum end distances for SB bolts are as shown in graphics.

- 3. Multiply the tabulated ASD wind or seismic loads by 1.6 or 1.4, respectively, to obtain LRFD capacities.
- 4. Per Section 1613 of the IBC, detached one- and two-story dwellings in SDC C may use "Wind and SDC A&B" allowable loads.

5. See ESR-2611 for additional information.

6. Midwall loads apply when anchor is 1.5 le or greater from the end. For bolts acting in tension simultaneously, the minimum bolt center-to-center spacing is 3 le.

C-C-2015 © 2015 SIMPSON STRONG-TIE COMPANY INC. PRINTED 12/14